6533b7dafe1ef96bd126e2fb

RESEARCH PRODUCT

Smart composite films of nanometric thickness based on copper-iodine coordination polymers. Toward sensors.

Ulises R. Rodríguez-mendozaJavier González-platasFélix ZamoraJavier Conesa-egeaCarlos J. Gómez-garcíaVanesa Fernández-moreiraJosé I. MartínezNoemí NogalPilar Amo-ochoaSalomé Delgado

subject

Materials scienceFabricationPolymersThin filmsComposite numberSupramolecular chemistryNanocomposite films02 engineering and technologyOptoelectronic devices010402 general chemistry01 natural sciencesNanomaterialschemistry.chemical_classificationFilm thicknessChainsNanostructured materialsQuímicaGeneral ChemistryPolymerBinary alloys021001 nanoscience & nanotechnology0104 chemical sciencesChemistrychemistryChemical engineeringNanofiberNanometreFilm preparationSupramolecular chemistry0210 nano-technologyCoordination reactionsNanofibresCopperMechanoluminescenceIodine

description

One-pot reactions between CuI and methyl or methyl 2-amino-isonicotinate give rise to the formation of two coordination polymers (CPs) based on double zig-zag Cu2I2 chains. The presence of a NH2 group in the isonicotinate ligand produces different supramolecular interactions affecting the Cu-Cu distances and symmetry of the Cu2I2 chains. These structural variations significantly modulate their physical properties. Thus, both CPs are semiconductors and also show reversible thermo/mechanoluminescence. X-ray diffraction studies carried out under different temperature and pressure conditions in combination with theoretical calculations have been used to rationalize the multi-stimuli-responsive properties. Importantly, a bottom-up procedure based on fast precipitation leads to nanofibers of both CPs. The dimensions of these nanofibres enable the preparation of thermo/mechanochromic film composites with polyvinylidene difluoride. These films are tens of nanometers in thickness while being centimeters in length, representing smaller thicknesses so far reported for thin-film composites. This nanomaterial integration of CPs could represent a source of alternative nanomaterials for opto-electronic device fabrication.

10.1039/c8sc03085ehttps://pubmed.ncbi.nlm.nih.gov/30450184