6533b7dafe1ef96bd126ed54

RESEARCH PRODUCT

Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization

Luise FlorinCornelia SappMartin SappKatrin A. Becker

subject

ImmunoprecipitationRecombinant Fusion ProteinsGreen Fluorescent ProteinsNuclear Localization SignalsActive Transport Cell NucleusFluorescent Antibody TechniqueBiologyImmunofluorescenceAutoantigensGreen fluorescent proteinDeath-associated protein 6DaxxVirologyTumor Cells CulturedmedicineSp100HumansNLSPapillomaviridaeAdaptor Proteins Signal TransducingCell Nucleusmedicine.diagnostic_testIntracellular Signaling Peptides and ProteinsND10Nuclear ProteinsAntigens NuclearL2Oncogene Proteins ViralPapillomavirusbiochemical phenomena metabolism and nutritionMolecular biologyDeletion MutagenesisLuminescent ProteinsCapsidMutagenesisCapsid ProteinsCarrier ProteinsCo-Repressor ProteinsGene DeletionNuclear localization sequenceMolecular Chaperones

description

Abstract We have recently shown that the minor capsid protein L2 of human papillomavirus type 33 (HPV33) recruits the transcriptional repressor Daxx into nuclear domains (ND) 10 and causes the loss of the transcriptional activator Sp100 from these subnuclear structures (Florin et al., 2002b) . In order to dissect L2 domains involved in nuclear translocation, ND10 homing, loss of Sp100, and recruitment of Daxx, a detailed deletion mutagenesis of L2 was performed. Using immunofluorescence and green fluorescent protein fusions, we have identified two nuclear localization signals (NLS) in the central and C-terminal part of L2, respectively, homologous to previously identified NLS in HPV6B L2 (Sun et al., 1995) . We mapped the ND10 localization domain to within a 30 amino acid peptide in the C-terminal half of L2. L2-induced attraction of Daxx into ND10, coimmunoprecipitation of L2 and Daxx, as well as induction of the loss of Sp100 from ND10 require an intact ND10 localization domain. This domain contains conserved PXXP motives characteristic of some protein/protein interacting domains. Our data also suggest that the Daxx/L2 interaction may be the driving force for L2 accumulation in ND10.

https://doi.org/10.1016/s0042-6822(03)00447-1