6533b7dbfe1ef96bd126f7d9

RESEARCH PRODUCT

The action of a compact Lie group on nilpotent Lie algebras of type {{n,2}}

Giovanni FalconeÁGota Figula

subject

pair of alternating formsPure mathematicsClass (set theory)General MathematicsGroup Theory (math.GR)010103 numerical & computational mathematicsType (model theory)01 natural sciencesMathematics::Group TheoryTermészettudományokLie algebraFOS: MathematicsMatematika- és számítástudományok0101 mathematicsNilpotent Lie algebraMathematicsCommutatorApplied Mathematics010102 general mathematicsLie groupCodimensionAutomorphismNilpotent17B05 17B30 15A63&nbspSettore MAT/03 - GeometriaMathematics - Group Theory

description

Abstract We classify finite-dimensional real nilpotent Lie algebras with 2-dimensional central commutator ideals admitting a Lie group of automorphisms isomorphic to SO 2 ⁢ ( ℝ ) ${{\mathrm{SO}}_{2}(\mathbb{R})}$ . This is the first step to extend the class of nilpotent Lie algebras 𝔥 ${{\mathfrak{h}}}$ of type { n , 2 } ${\{n,2\}}$ to solvable Lie algebras in which 𝔥 ${{\mathfrak{h}}}$ has codimension one.

https://doi.org/10.1515/forum-2014-0170