6533b7dbfe1ef96bd12701b8
RESEARCH PRODUCT
Nano-Jewels in Biology. Gold and Platinum on Diamond Nanoparticles as Antioxidant Systems Against Cellular Oxidative Stress
José Raúl HeranceHermenegildo GarcíaVictor M. VictorCristina MenchónNadezda ApostolovaRoberto MartínMercedes Alvarosubject
Materials scienceAntioxidantBiocompatibilityCell Survivalmedicine.medical_treatmentInorganic chemistryIntracellular SpaceGeneral Physics and Astronomychemistry.chemical_elementApoptosischemical and pharmacologic phenomenamedicine.disease_causePlatinum nanoparticlesAntioxidantsCatalysisCatalysischemistry.chemical_compoundMaterials TestingmedicineHumansGeneral Materials ScienceCell ProliferationPlatinumHydroxyl RadicalGeneral EngineeringGlutathioneOxidative StresschemistryNanoparticlesGoldParticle sizeDiamondPlatinumOxidative stressHeLa Cellsdescription
Diamond nanoparticles (DNPs) obtained by explosive detonation have become commercially available. These commercial DNPs can be treated under Fenton conditions (FeSO(4) and H(2)O(2) at acidic pH) to obtain purer DNP samples with a small average particle size (4 nm) and a large population of surface OH groups (HO-DNPs). These Fenton-treated HO-DNPs have been used as a support of gold and platinum nanoparticles (≤2 nm average size). The resulting materials (Au/HO-DNP and Pt/HO-DNP) exhibit a high antioxidant activity against reactive oxygen species induced in a hepatoma cell line. In addition to presenting good biocompatibility, Au/HO- and Pt/HO-DNP exhibit about a two-fold higher antioxidant activity than glutathione, one of the reference antioxidant systems. The most active material against cellular oxidative stress was Au/HO-DNP.
year | journal | country | edition | language |
---|---|---|---|---|
2010-10-14 | ACS Nano |