6533b7dbfe1ef96bd12709e0
RESEARCH PRODUCT
The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem
Néstor ThomeSilvia Viviana GigolaLeila Lebtahisubject
Inverse iterationOptimization problemApplied Mathematics010102 general mathematicsMathematical analysisInverseGeneralized inversesEigenvalues010103 numerical & computational mathematicsExpression (computer science)Hermitian matrixMatrius (Matemàtica)01 natural sciencesHermitian matrixComputational MathematicsMatrix (mathematics)Applied mathematics0101 mathematicsDivide-and-conquer eigenvalue algorithmÀlgebra linealOptimization problemMATEMATICA APLICADAEigenvalues and eigenvectorsMathematicsdescription
The inverse eigenvalue problem and the associated optimal approximation problem for Hermitian reflexive matrices with respect to a normal {k+1}-potent matrix are considered. First, we study the existence of the solutions of the associated inverse eigenvalue problem and present an explicit form for them. Then, when such a solution exists, an expression for the solution to the corresponding optimal approximation problem is obtained.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |