6533b7dbfe1ef96bd12709e0

RESEARCH PRODUCT

The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem

Néstor ThomeSilvia Viviana GigolaLeila Lebtahi

subject

Inverse iterationOptimization problemApplied Mathematics010102 general mathematicsMathematical analysisInverseGeneralized inversesEigenvalues010103 numerical & computational mathematicsExpression (computer science)Hermitian matrixMatrius (Matemàtica)01 natural sciencesHermitian matrixComputational MathematicsMatrix (mathematics)Applied mathematics0101 mathematicsDivide-and-conquer eigenvalue algorithmÀlgebra linealOptimization problemMATEMATICA APLICADAEigenvalues and eigenvectorsMathematics

description

The inverse eigenvalue problem and the associated optimal approximation problem for Hermitian reflexive matrices with respect to a normal {k+1}-potent matrix are considered. First, we study the existence of the solutions of the associated inverse eigenvalue problem and present an explicit form for them. Then, when such a solution exists, an expression for the solution to the corresponding optimal approximation problem is obtained.

10.13039/501100005363https://dx.doi.org/10.1016/j.cam.2015.03.052