0000000000377344

AUTHOR

Silvia Viviana Gigola

showing 2 related works from this author

The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem

2016

The inverse eigenvalue problem and the associated optimal approximation problem for Hermitian reflexive matrices with respect to a normal {k+1}-potent matrix are considered. First, we study the existence of the solutions of the associated inverse eigenvalue problem and present an explicit form for them. Then, when such a solution exists, an expression for the solution to the corresponding optimal approximation problem is obtained.

Inverse iterationOptimization problemApplied Mathematics010102 general mathematicsMathematical analysisInverseGeneralized inversesEigenvalues010103 numerical & computational mathematicsExpression (computer science)Hermitian matrixMatrius (Matemàtica)01 natural sciencesHermitian matrixComputational MathematicsMatrix (mathematics)Applied mathematics0101 mathematicsDivide-and-conquer eigenvalue algorithmÀlgebra linealOptimization problemMATEMATICA APLICADAEigenvalues and eigenvectorsMathematics
researchProduct

Inverse eigenvalue problem for normal J-hamiltonian matrices

2015

[EN] A complex square matrix A is called J-hamiltonian if AT is hermitian where J is a normal real matrix such that J(2) = -I-n. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse eigenvalue problem. (C) 2015 Elsevier Ltd. All rights reserved.

Hamiltonian matrixApplied MathematicsHamiltonian matrixMoore–Penrose inverseMatrius (Matemàtica)Normal matrixSquare matrixHermitian matrixCombinatoricssymbols.namesakeMatrix (mathematics)Inverse eigenvalue problemsymbolsÀlgebra linealDivide-and-conquer eigenvalue algorithmMATEMATICA APLICADAHamiltonian (quantum mechanics)Normal matrixEigenvalues and eigenvectorsMathematicsMathematical physicsApplied Mathematics Letters
researchProduct