0000000000377344
AUTHOR
Silvia Viviana Gigola
The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem
The inverse eigenvalue problem and the associated optimal approximation problem for Hermitian reflexive matrices with respect to a normal {k+1}-potent matrix are considered. First, we study the existence of the solutions of the associated inverse eigenvalue problem and present an explicit form for them. Then, when such a solution exists, an expression for the solution to the corresponding optimal approximation problem is obtained.
Inverse eigenvalue problem for normal J-hamiltonian matrices
[EN] A complex square matrix A is called J-hamiltonian if AT is hermitian where J is a normal real matrix such that J(2) = -I-n. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse eigenvalue problem. (C) 2015 Elsevier Ltd. All rights reserved.