6533b825fe1ef96bd12832e3
RESEARCH PRODUCT
Inverse eigenvalue problem for normal J-hamiltonian matrices
Leila LebtahiNéstor ThomeSilvia Viviana Gigolasubject
Hamiltonian matrixApplied MathematicsHamiltonian matrixMoore–Penrose inverseMatrius (Matemàtica)Normal matrixSquare matrixHermitian matrixCombinatoricssymbols.namesakeMatrix (mathematics)Inverse eigenvalue problemsymbolsÀlgebra linealDivide-and-conquer eigenvalue algorithmMATEMATICA APLICADAHamiltonian (quantum mechanics)Normal matrixEigenvalues and eigenvectorsMathematicsMathematical physicsdescription
[EN] A complex square matrix A is called J-hamiltonian if AT is hermitian where J is a normal real matrix such that J(2) = -I-n. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse eigenvalue problem. (C) 2015 Elsevier Ltd. All rights reserved.
year | journal | country | edition | language |
---|---|---|---|---|
2015-10-01 | Applied Mathematics Letters |