6533b7dbfe1ef96bd1270bd2

RESEARCH PRODUCT

Emerging switchable ultraviolet photoluminescence in dehydrated Zn/Al layered double hydroxide nanoplatelets

G PerezA GenerosiA. MattocciaGianluca Verona-rinatiGiuseppe ArrabitoB PaciGiuseppe PrestopinoPier Gianni Medaglia

subject

0301 basic medicineMaterials sciencePhotoluminescenceCoprecipitationIntercalation (chemistry)Thermal desorptionlcsh:Medicineswitchable ultraviolet photoluminescenceengineering.materialTwo-dimensional materialsArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicine2D materials Layered Double Hydroxides Photoluminescence Vacuumlcsh:ScienceQuenchingMultidisciplinaryZn/Al layered double hydroxideX-ray Diffractionlcsh:RSettore FIS/01 - Fisica SperimentaleLayered double hydroxidesExfoliation joint030104 developmental biologychemistryChemical engineeringengineeringHydroxidelcsh:Q030217 neurology & neurosurgery

description

AbstractLayered double hydroxides show intriguing physical and chemical properties arising by their intrinsic self-assembled stacking of molecular-thick 2D nanosheets, enhanced active surface area, hosting of guest species by intercalation and anion exchanging capabilities. Here, we report on the unprecedented emerging intense ultraviolet photoluminescence in Zn/Al layered double hydroxide high-aspect-ratio nanoplatelets, which we discovered to be fully activated by drying under vacuum condition and thermal desorption as well. Photoluminescence and its quenching were reproducibly switched by a dehydration–hydration process. Photoluminescence properties were comprehensively evaluated, such as temperature dependence of photoluminescence features and lifetime measurements. The role of 2D morphology and arrangement of hydroxide layers was demonstrated by evaluating the photoluminescence before and after exfoliation of a bulk phase synthetized by a coprecipitation method.

https://doi.org/10.1038/s41598-019-48012-8