6533b7dcfe1ef96bd1271678

RESEARCH PRODUCT

Tracking the corticospinal responses to strength training

Alan J. PearceDawson KidgellJanne AvelaAshlyn K. FrazerJoel MasonGlyn HowatsonGlyn Howatson

subject

AdultMaleshort-interval cortical inhibitionmedicine.medical_specialtyPhysiologyStrength trainingsilent periodeducationPyramidal Tracts03 medical and health sciencesYoung Adult0302 clinical medicinePhysical medicine and rehabilitationPhysiology (medical)Neuroplasticitystrength trainingMedicineHumansOrthopedics and Sports MedicineMuscle Strengthbusiness.industryElectromyographyPublic Health Environmental and Occupational HealthMotor Cortexcortical plasticityResistance Training030229 sport sciencesGeneral MedicineHuman physiologySpinal cordC600Transcranial Magnetic Stimulationmedicine.anatomical_structureaivokuoriIntracortical facilitationMuscle strengthSilent periodFemalecorticospinal excitabilityvoimaharjoittelubusinessTraining program030217 neurology & neurosurgeryintracortical facilitation

description

Purpose\ud The motor cortex (M1) appears to be a primary site of adaptation following both a single session, and repeated strength-training sessions across multiple weeks. Given that a single session of strength-training is sufficient to induce modification at the level of the M1 and corticospinal tract, this study sought to determine how these acute changes in M1 and corticospinal tract might accumulate across the course of a 2-week heavy-load strength-training program.\ud \ud Methods\ud Transcranial magnetic stimulation (TMS) was used to infer corticospinal excitability (CSE), intracortical facilitation (ICF), short and long-interval intracortical inhibition (SICI and LICI) and silent period duration prior to and following each training session during a 2-week heavy-load strength-training period.\ud \ud Results\ud Following 2-weeks of strength-training, increases in strength (15.5%, P = 0.01) were accompanied by an increase in CSE (44%, P = 0.006) and reductions in both silent period duration (14%, P < 0.0001) and SICI (35%, P = 0.0004). Early training sessions acutely increased CSE and ICF, and acutely reduced silent period duration and SICI. However, later training sessions failed to modulate SICI and ICF, with substantial adaptations occurring offline between training sessions. No acute or retained changes in LICI were observed. Co-contraction of antagonists reduced by 36% following 2-weeks of strength-training.\ud \ud Conclusions\ud Collectively, these results indicate that corticospinal plasticity occurs within and between training sessions throughout a training period in distinct early and later stages that are modulated by separate mechanisms of plasticity. The development of strength is akin to the previously reported changes that occur following motor skill training.

http://urn.fi/URN:NBN:fi:jyu-202002192107