6533b7dcfe1ef96bd1271e81
RESEARCH PRODUCT
Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease
Luigi M. GrimaldiFulvio PlesciaMarta Di CarloDomenico NuzzoMaria RuscicaNatale BelluardoLuca CiceroMonica FrinchiPietro ScadutoMaria Fatima MassentiGiuseppa MudòGiovanni CassataCarla Cannizzarosubject
0301 basic medicineTime Factorsmedicine.medical_treatmentHippocampusCell CountPharmacologymedicine.disease_causeHippocampuslcsh:RC346-429Superoxide Dismutase-10302 clinical medicineNeuroinflammationNF-kBMicrogliaGeneral NeuroscienceMicrofilament ProteinsROSPro-inflammatory cytokineIFNβ1amedicine.anatomical_structureCytokineNeurologyIL-10CytokinesFemalemedicine.symptomAlzheimer's diseaseInterferon beta-1aPro-inflammatory cytokinesImmunologyAβ 1-42InflammationProinflammatory cytokine03 medical and health sciencesCellular and Molecular NeuroscienceHippocampuAlzheimer DiseaseGlial Fibrillary Acidic ProteinmedicineAnimalsAβ1-42Rats WistarSODMaze Learninglcsh:Neurology. Diseases of the nervous systemNeuroinflammationInflammationAmyloid beta-PeptidesNeuroscience (all)Superoxide Dismutasebusiness.industryResearchCalcium-Binding ProteinsRecognition Psychologymedicine.diseasePeptide FragmentsRatsDisease Models Animal030104 developmental biologyLipid PeroxidationCognition DisordersReactive Oxygen Speciesbusiness030217 neurology & neurosurgeryOxidative stressdescription
Background: Aβ 1-42 peptide abnormal production is associated with the development and maintenance of neuroinflammation and oxidative stress in brains from Alzheimer disease (AD) patients. Suppression of neuroinflammation may then represent a suitable therapeutic target in AD. We evaluated the efficacy of IFNβ1a in attenuating cognitive impairment and inflammation in an animal model of AD. Methods: A rat model of AD was obtained by intra-hippocampal injection of Aβ 1-42 peptide (23 μg/2 μl). After 6 days, 3.6 μg of IFNβ1a was given subcutaneously (s.c.) for 12 days. Using the novel object recognition (NOR) test, we evaluated changes in cognitive function. Measurement of pro-inflammatory or anti-inflammatory cytokines, reactive oxygen species (ROS), and SOD activity levels was performed in the hippocampus. Data were evaluated by one-way ANOVA with Fisher's Protected Least Significant Difference (PLSD) test. Results: We showed that treatment with IFNβ1a was able to reverse memory impairment and to counteract microglia activation and upregulation of pro-inflammatory cytokines (IL-6, IL-1β) in the hippocampus of Aβ 1-42 -injected rats. The anti-inflammatory cytokine IL-10, significantly reduced in the Aβ 1-42 animals, recovered to control levels following IFNβ1a treatment. IFNβ1a also reduced ROS and lipids peroxidation and increased SOD1 protein levels in the hippocampus of Aβ 1-42 -injected rats. Conclusion: This study shows that IFNβ1a is able to reverse the inflammatory and cognitive effects of intra-hippocampal Aβ 1-42 in the rat. Given the role played by inflammation in AD pathogenesis and the established efficacy of IFNβ1a in the treatment of inflammatory diseases of the central nervous system such as multiple sclerosis, its use may be a viable strategy to inhibit the pro-inflammatory cytokine and oxidative stress cascade associated with Aβ deposition in the hippocampus of AD patients.
year | journal | country | edition | language |
---|---|---|---|---|
2018-08-13 | Journal of Neuroinflammation |