6533b7ddfe1ef96bd127408a
RESEARCH PRODUCT
Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches
Matiss Martins RammaLiga JasulanecaJelena KosmacaAlexander I. LivshitsJuris PrikulisDaniels JevdokimovsRaitis SondorsRaimonds MeijaDonats Ertssubject
Materials scienceFabricationGeneral Chemical EngineeringNanowire02 engineering and technology010402 general chemistry01 natural sciencesArticlebottom-uplcsh:Chemistrynanoelectromechanical switchNEMSEtching (microfabrication)Hardware_INTEGRATEDCIRCUITSGeneral Materials ScienceLithographyNanoelectromechanical systemsHardware_MEMORYSTRUCTURESbusiness.industry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)CuOlcsh:QD1-999nanowiresPower consumptionElectrodeOptoelectronics0210 nano-technologybusinessdescription
Electrostatically actuated nanoelectromechanical (NEM) switches hold promise for operation with sharply defined ON/OFF states, high ON/OFF current ratio, low OFF state power consumption, and a compact design. The present challenge for the development of nanoelectromechanical system (NEMS) technology is fabrication of single nanowire based NEM switches. In this work, we demonstrate the first application of CuO nanowires as NEM switch active elements. We develop bottom-up and top-down approaches for NEM switch fabrication, such as CuO nanowire synthesis, lithography, etching, dielectrophoretic alignment of nanowires on electrodes, and nanomanipulations for building devices that are suitable for scalable production. Theoretical modelling finds the device geometry that is necessary for volatile switching. The modelling results are validated by constructing gateless double-clamped and single-clamped devices on-chip that show robust and repeatable switching. The proposed design and fabrication route enable the scalable integration of bottom-up synthesized nanowires in NEMS.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-06 | Nanomaterials |