0000000000210899

AUTHOR

Jelena Kosmaca

Sensing properties of assembled Bi2S3nanowire arrays

Bismuth sulfide (Bi2S3) nanowires were grown in porous aluminium oxide template and a selective chemical etching was applied to transfer the nanowires to a solution. Well aligned nanowire arrays were assembled on pre-patterned silicon substrates employing dielectrophoresis. Electron beam lithography was used to connect aligned individual nanowires to the common macroelectrode. In order to evaluate the conductometric sensing performance of the Bi2S3 nanowires, current–voltage characteristics were measured at different relative humidity (RH) levels (5–80%) / argon medium. The response of the Bi2S3 nanowires depending of RH is found to be considerably different from those reported for other ty…

research product

Dielectrophoretic alignment and electrical characterization of CuO nanowire-based systems

Abstract Dielectrophoresis is used to assemble nanowires between metallic electrodes to form scalable functional interconnects. The dielectrophoresis parameters are investigated for semiconductor copper oxide (CuO) nanowires that are desirable for energy conversion and storage, gas sensors and nanoelectromechanical systems. Experimental yields of multiple- and single-nanowire interconnects are explored at dielectrophoresis frequencies from 500 Hz to 500 kHz. The electrical properties of nanowire-electrode physical contact interfaces formed by dielectrophoresis, metal deposition, and dry mechanical transfer are investigated. The electrical transport mechanism in these interconnects is determ…

research product

Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches

Electrostatically actuated nanoelectromechanical (NEM) switches hold promise for operation with sharply defined ON/OFF states, high ON/OFF current ratio, low OFF state power consumption, and a compact design. The present challenge for the development of nanoelectromechanical system (NEMS) technology is fabrication of single nanowire based NEM switches. In this work, we demonstrate the first application of CuO nanowires as NEM switch active elements. We develop bottom-up and top-down approaches for NEM switch fabrication, such as CuO nanowire synthesis, lithography, etching, dielectrophoretic alignment of nanowires on electrodes, and nanomanipulations for building devices that are suitable f…

research product

Role of Nanoelectromechanical Switching in the Operation of Nanostructured Bi2Se3 Interlayers between Conductive Electrodes

We demonstrate a simple low-cost method of preparation of layered devices for opto- and thermoelectric applications. The devices consist of a functional Bi2Se3 layer of randomly oriented nanoplates and flexible nanobelts enclosed between two flat indium tin oxide (ITO) electrodes. The number of functional interconnections between the ITO electrodes and correspondingly the efficiency of the device can be increased by gradual nanoelectromechanical (NEM) switching of flexible individual Bi2Se3 nanobelts in the circuit. NEM switching is achieved through applying an external voltage to the device. For the first time, we investigate in situ NEM switching and breakdown parameters of Bi2Se3 nanobel…

research product

Young’s modulus and indirect morphological analysis of Bi2Se3nanoribbons by resonance measurements

An electrostatically induced resonance behaviour of individual topological insulator Bi2Se3 nanoribbons grown by a catalyst free vapour-solid synthesis was studied in situ by scanning electron microscopy. It was demonstrated that the relation between the resonant frequencies of vibrations in orthogonal planes can be applied to distinguish the nanoribbons with rectangular cross-sections from the nanoribbons having step-like morphology (terraces). The average Young's modulus of the Bi2Se3 nanoribbons with rectangular cross-sections was found to be 44 ± 4 GPa.

research product

Extra tension at electrode-nanowire adhesive contacts in nano-electromechanical devices

Abstract We report a strong tangential component of the reaction force at electrode to nanowire adhesive contact which was previously established using electrostatic attraction. The reaction force tangential component absolute value was found to be comparable to or even bigger than the corresponding normal component. This effect is important for understanding of the mechanics of nano-electromechanical devices. Both the experiment and the corresponding theory are presented. Fitting of the obtained analytical solutions to experimental data was used to measure the reaction force acting at the contact for several nanowire-electrode configurations.

research product

Investigating the mechanical properties of GeSn nanowires.

Germanium tin (GeSn) has been proposed as a promising material for electronic and optical applications due to the formation of a direct band-gap at a Sn content >7 at%. Furthermore, the ability to manipulate the properties of GeSn at the nanoscale will further permit the realisation of advanced mechanical devices. Here we report for the first time the mechanical properties of GeSn nanowires (7.1-9.7 at% Sn) and assess their suitability as nanoelectromechanical (NEM) switches. Electron microscopy analysis showed the nanowires to be single crystalline, with surfaces covered by a thin native amorphous oxide layer. Mechanical resonance and bending tests at different boundary conditions were use…

research product

Application of Ge Nanowire for Two-Input Bistable Nanoelectromechanical Switch

Recently, several research groups presented bistable two-terminal nanoelectromechanical switches based on individual single-clamped active element. All presented devices had one input electrode. Similar devices having two or more input electrodes have not been yet investigated. In this work we present the two-input bistable controlled nanoelectromechanical switch based on an individual single-clamped Ge nanowire. The switch is realised using in-situ SEM technique and operating due to balancing of electrostatic, adhesion and elastic forces. The operation conditions of the device are investigated and presented. The advantages and drawbacks of the device are discussed. DOI: http://dx.doi.org/1…

research product

Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods

Size distribution, Young&rsquo

research product

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

This review summarizes relevant research in the field of electrostatically actuated nanobeam-based nanoelectromechanical (NEM) switches. The main switch architectures and structural elements are briefly described and compared. Investigation methods that allow for exploring coupled electromechanical interactions as well as studies of mechanically or electrically induced effects are covered. An examination of the complex nanocontact behaviour during various stages of the switching cycle is provided. The choice of the switching element and the electrode is addressed from the materials perspective, detailing the benefits and drawbacks for each. An overview of experimentally demonstrated NEM swi…

research product

Nanowires for NEMS Switches

Nanoelectromechanical systems (NEMS) are a promising novel technology for operation in extreme conditions (e.g. high temperature and radiation levels), where complementary semiconductor technology devices might fail due to electronic instability. An example for a NEMS device is a nanowire-based switch, which employs mechanical deflection of a nanowire to open and close an electrical circuit. To date, assembly and operation of individual nanowire based NEMS switches have been successfully demonstrated at laboratory level, but their further technological development remains a challenge. This chapter gives an insight into the current advances in applications of nanowires for NEMS switches. Syn…

research product

Resonance assisted jump-in voltage reduction for electrostatically actuated nanobeam-based gateless NEM switches.

Electrostatically actuated nanobeam-based electromechanical switches have shown promise for versatile novel applications, such as low power devices. However, their widespread use is restricted due to poor reliability resulting from high jump-in voltages. This article reports a new method for lowering the jump-in voltage by inducing mechanical oscillations in the active element during the switching ON process, reducing the jump-in voltage by more than three times. Ge0.91Sn0.09 alloy and Bi2Se3 nanowire-based nanoelectromechanical switches were constructed in situ to demonstrate the operation principles and advantages of the proposed method.

research product

Electric current induced modification of germanium nanowire NEM switch contact.

We present an investigation of contact properties of a germanium (Ge) nanowire based nanoelectromechanical (NEM) switch in its ON state. The contact stiffness in the ON state was evaluated by detecting the nanowire's resonance frequency. It was found that the resonance frequency increases when electric current flows through the nanowire/counter electrode contact area. The reason for modification in the contact area is referred to as electric-current-induced processes in the native oxide layer covering the nanowires. The presented resonance shift method is a simple way to indicate strengthening of the nanowire/counter electrode contact area without disassembling the contact.

research product