6533b7ddfe1ef96bd127409b
RESEARCH PRODUCT
Dual-polarity pulse processing and analysis for charge-loss correction in cadmium–zinc–telluride pixel detectors
Andrea ZappettiniPaul SellerO J L FoxGaetano GerardiG. BenassiFabio PrincipatoManuele BettelliMatthew C. VealeLeonardo AbbeneNicola ZambelliKawal Sawhneysubject
0301 basic medicine030103 biophysicsNuclear and High Energy PhysicsMaterials sciencePreamplifierPhysics::Instrumentation and Detectors01 natural sciencesCollimated lightCharge sharinglaw.invention03 medical and health scienceschemistry.chemical_compoundOpticslawcharge losse0103 physical sciencesInstrumentationenergy-resolved photon-counting detectorsNuclear and High Energy Physiccharge lossescharge sharingRadiationPixel010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorDetectorSettore FIS/01 - Fisica Sperimentaleenergy-resolved photon-counting detectorSynchrotronSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc tellurideX-ray and gamma-ray detectorschemistryDirect couplingbusinessX-ray and gamma-ray detectordescription
Charge losses at the inter-pixel gap are typical drawbacks in cadmium–zinc–telluride (CZT) pixel detectors. In this work, an original technique able to correct charge losses occurring after the application of charge-sharing addition (CSA) is presented. The method, exploiting the strong relation between the energy after CSA and the beam position at the inter-pixel gap, allows the recovery of charge losses and improvements in energy resolution. Sub-millimetre CZT pixel detectors were investigated with both uncollimated radiation sources and collimated synchrotron X-rays, at energies below and above the K-shell absorption energy of the CZT material. The detectors are DC coupled to fast and low-noise charge-sensitive preamplifiers (PIXIE ASIC) and followed by a 16-channel digital readout electronics, performing multi-parameter analysis (event arrival time, pulse shape, pulse height). Induced-charge pulses with negative polarity were also observed in the waveforms from the charge-sensitive preamplifiers (CSPs) at energies >60 keV. The shape and the height of these pulses were analysed, and their role in the mitigation of charge losses in CZT pixel detectors. These activities are in the framework of an international collaboration on the development of energy-resolved photon-counting systems for spectroscopic X-ray imaging (5–140 keV).
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |