0000000000208902

AUTHOR

Andrea Zappettini

showing 22 related works from this author

Development of a 3D CZT Spectrometer System with Digital Readout for Hard X/Gamma-Ray Astronomy

2019

We report on the development and of a complete X/γ rays detection system (10-1000 keV) based on CZT spectrometers with spatial resolution in three dimensions (3D) and a digital electronics acquisition chain. The prototype is made by packing four linear modules, each composed of one 3D CZT sensors. Each sensors is realized using a single spectroscopic graded CZT crystal of about 20×20×5 mm3. An electrode structure consisting of 12 collecting anodes with a pitch of 1.6 mm and 3 drift strips between each pair of anodes for 48 strips (0.15 mm wide) on the anodic side was adopted. The cathode is made of 10 strips with a pitch of 2 mm and orthogonal to anode side strips. Since the reading of the …

Materials scienceSTRIPSCZT detectorsensorscomputer.software_genre01 natural scienceslaw.invention010309 opticsOpticslaw0103 physical sciencesDigital Readout010303 astronomy & astrophysicsImage resolutionDigital electronicsX-ray and gamma ray detectorsSpectrometerbusiness.industryFirmwareSettore FIS/01 - Fisica SperimentaleDetectorSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CathodeAnode3D CZTbusinesscomputer2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
researchProduct

Development of new CdZnTe detectors for room-temperature high-flux radiation measurements

2017

Recently, CdZnTe (CZT) detectors have been widely proposed and developed for room-temperature X-ray spectroscopy even at high fluxes, and great efforts have been made on both the device and the crystal growth technologies. In this work, the performance of new travelling-heater-method (THM)-grown CZT detectors, recently developed at IMEM-CNR Parma, Italy, is presented. Thick planar detectors (3 mm thick) with gold electroless contacts were realised, with a planar cathode covering the detector surface (4.1 mm × 4.1 mm) and a central anode (2 mm × 2 mm) surrounded by a guard-ring electrode. The detectors, characterized by low leakage currents at room temperature (4.7 nA cm−2 at 1000 V cm−1), a…

Nuclear and High Energy PhysicsPreamplifier02 engineering and technologydigital pulse shape analysiRadiation01 natural scienceslaw.inventionPlanarOpticstravelling heater methodlaw0103 physical scienceshigh fluxInstrumentationenergy-resolved photon-counting detectorsNuclear and High Energy PhysicPhysicsRadiationdigital pulse shape analysis010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorDetectorSettore FIS/01 - Fisica SperimentaleX-ray and γ-ray detectorenergy-resolved photon-counting detector021001 nanoscience & nanotechnologyCathodeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Anodegold electroless contactFull width at half maximumX-ray and -ray detectors0210 nano-technologybusinessVoltage
researchProduct

Dual-polarity pulse processing and analysis for charge-loss correction in cadmium–zinc–telluride pixel detectors

2018

Charge losses at the inter-pixel gap are typical drawbacks in cadmium–zinc–telluride (CZT) pixel detectors. In this work, an original technique able to correct charge losses occurring after the application of charge-sharing addition (CSA) is presented. The method, exploiting the strong relation between the energy after CSA and the beam position at the inter-pixel gap, allows the recovery of charge losses and improvements in energy resolution. Sub-millimetre CZT pixel detectors were investigated with both uncollimated radiation sources and collimated synchrotron X-rays, at energies below and above the K-shell absorption energy of the CZT material. The detectors are DC coupled to fast and low…

0301 basic medicine030103 biophysicsNuclear and High Energy PhysicsMaterials sciencePreamplifierPhysics::Instrumentation and Detectors01 natural sciencesCollimated lightCharge sharinglaw.invention03 medical and health scienceschemistry.chemical_compoundOpticslawcharge losse0103 physical sciencesInstrumentationenergy-resolved photon-counting detectorsNuclear and High Energy Physiccharge lossescharge sharingRadiationPixel010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorDetectorSettore FIS/01 - Fisica Sperimentaleenergy-resolved photon-counting detectorSynchrotronSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc tellurideX-ray and gamma-ray detectorschemistryDirect couplingbusinessX-ray and gamma-ray detector
researchProduct

Electrical properties of Au/CdZnTe/Au detectors grown by the boron oxide encapsulated Vertical Bridgman technique

2016

Abstract In this work we report on the results of electrical characterization of new CdZnTe detectors grown by the Boron oxide encapsulated Vertical Bridgman technique (B-VB), currently produced at IMEM-CNR (Parma, Italy). The detectors, with gold electroless contacts, have different thicknesses (1 and 2.5 mm) and the same electrode layout, characterized by a central anode surrounded by a guard-ring electrode. Investigations on the charge transport mechanisms and the electrical contact properties, through the modeling of the measured current–voltage ( I – V ) curves, were performed. Generally, the detectors are characterized by low leakage currents at high bias voltages even at room tempera…

Nuclear and High Energy PhysicsTraveling heater method electrical propertie02 engineering and technology01 natural sciencesBoron oxide encapsulated Vertical Bridgman techniqueTraveling heater methodElectrical resistivity and conductivity0103 physical sciencesInstrumentationDeposition (law)010302 applied physicsPhysicsInterfacial layer-thermionic-diffusionbusiness.industryCdZnTe detectorsCdZnTe detectorSettore FIS/01 - Fisica SperimentaleBiasing021001 nanoscience & nanotechnologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Electrical contactsAnodeBoron oxideelectrical propertiesElectrodeOptoelectronics0210 nano-technologybusinessVoltageNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Advances in High-Energy-Resolution CdZnTe Linear Array Pixel Detectors with Fast and Low Noise Readout Electronics

2023

Radiation detectors based on Cadmium Zinc Telluride (CZT) compounds are becoming popular solutions thanks to their high detection efficiency, room temperature operation, and to their reliability in compact detection systems for medical, astrophysical, or industrial applications. However, despite a huge effort to improve the technological process, CZT detectors’ full potential has not been completely exploited when both high spatial and energy resolution are required by the application, especially at low energies (<10 keV), limiting their application in energy-resolved photon counting (ERPC) systems. This gap can also be attributed to the lack of dedicated front-end electronics whic…

CZTSettore FIS/01 - Fisica SperimentaleX-ray spectroscopyCdZnTeGamma-ray spectroscopyElectrical and Electronic EngineeringBiochemistryInstrumentationSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)nuclear microelectronicsAtomic and Molecular Physics and Opticssemiconductor radiation detectorsAnalytical ChemistrySensors
researchProduct

Optimization of quasi-hemispherical CdZnTe detectors by means of first principles simulation

2023

AbstractIn this paper we present the development of quasi-hemispherical gamma-ray detectors based on CdZnTe. Among the possible single-polarity electrode configurations, such as coplanar, pixelated, or virtual Frisch-grid geometries, quasi-hemispherical detectors are the most cost-effective alternative with comparable raw energy resolution in the high and low energy range. The optimal configuration of the sensor in terms of dimension of the crystals and electrode specifications has been first determined by simulations, and successively validated with experimental measures. Spectra from different sources have been acquired to evaluate the detectors performances. Three types of detectors with…

MultidisciplinaryCdZnTe detectorSettore FIS/01 - Fisica SperimentaleX-ray spectroscopyGamma ray spectroscopysemiconductor detectorSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Ballistic Deficit Pulse Processing in Cadmium-Zinc-Telluride Pixel Detectors for High-Flux X-ray Measurements.

2022

High-flux X-ray measurements with high-energy resolution and high throughput require the mitigation of pile-up and dead time effects. The reduction of the time width of the shaped pulses is a key approach, taking into account the distortions from the ballistic deficit, non-linearity, and time instabilities. In this work, we will present the performance of cadmium–zinc–telluride (CdZnTe or CZT) pixel detectors equipped with digital shapers faster than the preamplifier peaking times (ballistic deficit pulse processing). The effects on energy resolution, throughput, energy-linearity, time stability, charge sharing, and pile-up are shown. The results highlight the absence of time instabilities …

X-ray and gamma ray detectorsPhysics::Instrumentation and DetectorsX-RaysBiochemistrySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Atomic and Molecular Physics and OpticsCdTe detectorsAnalytical ChemistryZincElectrical and Electronic EngineeringTelluriumInstrumentationCZT detectors; CdTe detectors; X-ray and gamma ray detectorsCZT detectorsCadmiumSensors (Basel, Switzerland)
researchProduct

Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

2009

Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector…

compound semiconductorsSiliconcompound semiconductorchemistry.chemical_elementNanotechnologyGermaniumReviewlcsh:Chemical technologyBiochemistryAnalytical Chemistrychemistry.chemical_compoundX-ray and gamma ray spectroscopylcsh:TP1-1185Electrical and Electronic EngineeringInstrumentationcompound semiconductors; CdTe and CdZnTe detectors; X-ray and gamma ray spectroscopyPhysicsSpectrometerbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleWide-bandgap semiconductorCdTe and CdZnTe detectorCdTe and CdZnTe detectorsSemiconductor radiation detectorsAtomic and Molecular Physics and OpticsCadmium telluride photovoltaicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc telluridechemistryOptoelectronicsbusiness
researchProduct

Energy Recovery of Multiple Charge Sharing Events in Room Temperature Semiconductor Pixel Detectors

2021

Multiple coincidence events from charge-sharing and fluorescent cross-talk are typical drawbacks in room-temperature semiconductor pixel detectors. The mitigation of these distortions in the measured energy spectra, using charge-sharing discrimination (CSD) and charge-sharing addition (CSA) techniques, is always a trade-off between counting efficiency and energy resolution. The energy recovery of multiple coincidence events is still challenging due to the presence of charge losses after CSA. In this work, we will present original techniques able to correct charge losses after CSA even when multiple pixels are involved. Sub-millimeter cadmium–zinc–telluride (CdZnTe or CZT) pixel detectors we…

Physics::Instrumentation and DetectorsCZT pixel detectors030303 biophysicsTP1-1185Radiation01 natural sciencesBiochemistryCoincidenceCollimated lightArticleAnalytical ChemistryCharge sharingcharge-sharing correction03 medical and health sciencesOptics0103 physical sciencesElectrical and Electronic EngineeringInstrumentationPhysics0303 health sciencesCharge sharing; Charge-sharing correction; CZT pixel detectors; Semiconductor pixel detectorscharge sharingPixel010308 nuclear & particles physicsbusiness.industryChemical technologyCounting efficiencyDetectorsemiconductor pixel detectorsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Atomic and Molecular Physics and OpticsPhoton countingbusinessSensors
researchProduct

Potentialities of High-Resolution 3-D CZT Drift Strip Detectors for Prompt Gamma-Ray Measurements in BNCT

2022

Recently, new high-resolution cadmium–zinc–telluride (CZT) drift strip detectors for room temperature gamma-ray spectroscopic imaging were developed by our group. The CZT detectors equipped with orthogonal anode/cathode collecting strips, drift strips and dedicated pulse processing allow a detection area of 6 × 20 mm2 and excellent room temperature spectroscopic performance (0.82% FWHM at 661.7 keV). In this work, we investigated the potentialities of these detectors for prompt gamma-ray spectroscopy (PGS) in boron neutron capture therapy (BNCT). The detectors, exploiting the measurement of the 478 keV prompt gamma rays emitted by 94% 7Li nuclides from the 10B(n, α)7…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSettore FIS/01 - Fisica SperimentalePhysics::Medical PhysicsBNCT; CZT detectors; X-ray and gamma-ray detectorsBoron Neutron Capture TherapyCZT detectors; X-ray and gamma-ray detectors; BNCTBiochemistrySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Atomic and Molecular Physics and OpticsAnalytical ChemistryZincX-ray and gamma-ray detectorsGamma RaysBNCTTelluriumElectrical and Electronic EngineeringInstrumentationCadmiumCZT detectors
researchProduct

Charge transport properties in CdZnTe detectors grown by the vertical Bridgman technique

2011

Presently, a great amount of effort is being devoted to the development of CdTe and CdZnTe (CZT) detectors for a large variety of applications such as medical, industrial, and space research. We present the spectroscopic properties of some CZT crystals grown by the standard vertical Bridgman method and by the boron oxide encapsulated vertical Bridgman method, which has been recently implemented at IMEM-CNR (Parma, Italy). In this technique, the crystal is grown in an open quartz crucible fully encapsulated by a thin layer of liquid boron oxide. This method prevents contact between the crystal and the crucible, thereby allowing larger single grains with a lower dislocation density to be obta…

Materials sciencebusiness.industryCdZnTe detectorSettore FIS/01 - Fisica SperimentaleGeneral Physics and AstronomyCrucibleMineralogyCrystal growthParticle detectorCadmium telluride photovoltaicsCrystalCZTX-ray and gamma ray spectroscopyBoron oxidevertical Bridgman methodOptoelectronicsCharge carrierThin filmbusinessX-ray radiation detector
researchProduct

Charge Transport Properties in CZT Detectors Grown by the Vertical Bridgman Technique

2010

Great efforts are being presently devoted to the development of CdTe and CdZnTe detectors for a large variety of applications, such as medical, industrial, and space research. We present the spectroscopic properties of some CZT crystals grown by the standard vertical Bridgman method and by the boron oxide encapsulated vertical Bridgman method, which has been recently implemented at IMEM-CNR (Parma, Italy). By this technique the crystal is grown in an open quartz crucible fully encapsulated by a thin layer of liquid boron oxide. This method prevents contact between the crystal and the crucible thereby allowing larger single grains with a lower dislocation density to be obtained. Several mono…

Materials sciencebusiness.industrySettore FIS/01 - Fisica SperimentaleCrucibleSynchrotron radiationX-ray detectorsCadmium telluride photovoltaicsCrystalBoron oxideElectric fieldElectronic engineeringCdZnTeOptoelectronicsCharge carrierbusinessBeam (structure)CZT detectors
researchProduct

Room-Temperature X-ray response of cadmium-zinc-Telluride pixel detectors grown by the vertical Bridgman technique

2020

In this work, the spectroscopic performances of new cadmium–zinc–telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm−1), with energy resolutions (FWHM) of 4% (0.9 keV), 1.7% (1 keV) and 1.3% (1.6 keV) at 22.1, 59.5 and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to the mitigation o…

Nuclear and High Energy PhysicsPhotonMaterials scienceCdZnTe pixel detectorDot pitchCollimated lightCharge sharinglaw.inventionspectroscopic X-ray imagingchemistry.chemical_compoundlawcharge losseInstrumentationRadiationcharge sharingbusiness.industrySettore FIS/01 - Fisica SperimentaleX-raySynchrotronSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc tellurideFull width at half maximumCdZnTe pixel detectors; charge losses; charge sharing; spectroscopic X-ray imaging; vertical Bridgman technique; X-ray and gamma-ray detectorsX-ray and gamma-ray detectorschemistryOptoelectronicsvertical Bridgman techniquebusinessX-ray and gamma-ray detector
researchProduct

Improved electroless platinum contacts on CdZnTe X- and γ-rays detectors

2020

AbstractPlatinum is a promising candidate for the realization of blocking electrical contacts on cadmium-zinc-telluride (CdZnTe or CZT) radiation detectors. However, the poor mechanical adhesion of this metal often shortens the lifetime of the final device. In this work, a simple and effective procedure to obtain robust platinum contacts by electroless deposition is presented. Microscopical analysis revealed the final thickness and composition of the contact layer and its adhesion to the bulk crystal. The blocking nature of the Pt-CdZnTe junction, essential to obtain low noise devices, was confirmed by current–voltage measurements. The planar Pt-CdZnTe-Pt detectors showed good room temperat…

0301 basic medicineMaterials for devicesMaterials sciencechemistry.chemical_elementlcsh:MedicineElectronCZT detectorELECTRIC-FIELD PROFILE;TRANSIENT-CURRENT;TRANSPORT-PROPERTIESPULSE-SHAPE;CDTE;PERFORMANCE;RESISTIVITY;DEPOSITION;BULKParticle detectorArticle03 medical and health sciences0302 clinical medicinePlanarlcsh:ScienceMultidisciplinarybusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorlcsh:RCarrier lifetimeX-ray and gamma ray detectorSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Electrical contactsMaterials scienceFull width at half maximum030104 developmental biologychemistrysemiconductor detectorOptoelectronicslcsh:QbusinessPlatinum030217 neurology & neurosurgeryScientific Reports
researchProduct

X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects

2016

Abstract Nowadays, CdZnTe (CZT) is one of the key materials for the development of room temperature X-ray and gamma ray detectors and great efforts have been made on both the device and the crystal growth technologies. In this work, we present the results of spectroscopic investigations on new boron oxide encapsulated vertical Bridgman (B-VB) grown CZT detectors, recently developed at IMEM-CNR Parma, Italy. Several detectors, with the same electrode layout (gold electroless contacts) and different thicknesses (1 and 2.5 mm), were realized: the cathode is a planar electrode covering the detector surface (4.1×4.1 mm2), while the anode is a central electrode (2×2 mm2) surrounded by a guard-rin…

0301 basic medicine030103 biophysicsNuclear and High Energy PhysicsHigh fluxDigital pulse shape analysi01 natural sciencesBoron oxide encapsulated vertical Bridgmanlaw.invention03 medical and health scienceslaw0103 physical sciencesPolarization (electrochemistry)InstrumentationPhysicsX-ray and gamma ray detectors010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorEnergy-resolved photon counting detectorSettore FIS/01 - Fisica SperimentaleDetectorGamma raySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CathodePhoton countingAnodeFull width at half maximumElectrodeEnergy-resolved photon counting detectorsOptoelectronicsDigital pulse shape analysisbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Microscale X-ray mapping of CZT arrays: Spatial dependence of amplitude, shape and multiplicity of detector pulses

2018

In this work, we present the results of a microscale X-ray mapping of a 2 mm thick CZT pixel detector, with pixel pitches of 500 μm and 250 μm, using collimated synchrotron X-ray sources at the Diamond Light source (U. K.). The detector is dc coupled to a fast and low noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to perform online fast pulse shape and height analysis (PSHA), with low dead time and reasonable energy resolution at both low and high fluxes. The detector allows high bias voltage operation (> 5000 V/cm) and good energy resolution at room temperature (5.3 %, 2.3 % and 2.1 % FWHM at 22.1, 59…

radiation detectorRadiology Nuclear Medicine and ImagingNuclear and High Energy PhysicsMaterials sciencePreamplifier01 natural sciencesCollimated light030218 nuclear medicine & medical imagingCharge sharinglaw.invention03 medical and health sciences0302 clinical medicineOpticslaw0103 physical scienceshigh fluxmappingInstrumentation010308 nuclear & particles physicsbusiness.industryASICDetectorBiasingDead timeSynchrotronSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CZTFull width at half maximumsinchrotron radiationbusiness
researchProduct

Window-Based Energy Selecting X-ray Imaging and Charge Sharing in Cadmium Zinc Telluride Linear Array Detectors for Contaminant Detection

2023

The spectroscopic and imaging performance of energy-resolved photon counting detectors, based on new sub-millimetre boron oxide encapsulated vertical Bridgman cadmium zinc telluride linear arrays, are presented in this work. The activities are in the framework of the AVATAR X project, planning the development of X-ray scanners for contaminant detection in food industry. The detectors, characterized by high spatial (250 µm) and energy (<3 keV) resolution, allow spectral X-ray imaging with interesting image quality improvements. The effects of charge sharing and energy-resolved techniques on contrast-to-noise ratio (CNR) enhancements are investigated. The benefits of a new energy-resolved …

energy-resolved X-ray imagingcharge sharingsemiconductor pixel detectorsX-ray detectorsElectrical and Electronic EngineeringCZT detectors; charge sharing; semiconductor pixel detectors; X-ray detectors; energy-resolved X-ray imaging; contaminant detectionBiochemistryInstrumentationAtomic and Molecular Physics and Opticscontaminant detectionSettore FIS/03 - Fisica Della MateriaAnalytical ChemistryCZT detectors
researchProduct

Incomplete Charge Collection at Inter-Pixel Gap in Low- and High-Flux Cadmium Zinc Telluride Pixel Detectors.

2022

The success of cadmium zinc telluride (CZT) detectors in room-temperature spectroscopic X-ray imaging is now widely accepted. The most common CZT detectors are characterized by enhanced-charge transport properties of electrons, with mobility-lifetime products μeτe > 10−2 cm2/V and μhτh > 10−5 cm2/V. These materials, typically termed low-flux LF-CZT, are successfully used for thick electron-sensing detectors and in low-flux conditions. Recently, new CZT materials with hole mobility-lifetime product enhancements (μhτh > 10−4 cm2/V and μeτe > 10−3 cm2/V) have been fabricated for high-flux measurements (high-flux HF-CZT detectors).…

Charge-sharing correctionPhotonsPhysics::Instrumentation and DetectorsX-RaysSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsIncomplete charge collectionBiochemistrySemiconductor pixel detectorsAtomic and Molecular Physics and OpticsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CZT detectors; charge sharing; incomplete charge collection; charge-sharing correction; semiconductor pixel detectorsAnalytical ChemistryZincCadmium CompoundsElectrical and Electronic EngineeringCharge sharingTelluriumInstrumentationCZT detectorsCadmiumSensors (Basel, Switzerland)
researchProduct

Room-temperature performance of 3 mm-thick cadmium-zinc-telluride pixel detectors with sub-millimetre pixelization.

2020

Cadmium–zinc–telluride (CZT) pixel detectors represent a consolidated choice for the development of room-temperature spectroscopic X-ray imagers, finding important applications in medical imaging, often as detection modules of a variety of new SPECT and CT systems. Detectors with 3–5 mm thicknesses are able to efficiently detect X-rays up to 140 keV giving reasonable room-temperature energy resolution. In this work, the room-temperature performance of 3 mm-thick CZT pixel detectors, recently developed at IMEM/CNR of Parma (Italy), is presented. Sub-millimetre detector arrays with pixel pitch less than 500 µm were fabricated. The detectors are characterized by good room-temperature performan…

Nuclear and High Energy PhysicsMaterials sciencePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomena02 engineering and technology01 natural sciencesDot pitchCollimated lightlaw.inventionCharge sharingchemistry.chemical_compoundOpticslaw0103 physical sciencesInstrumentation010302 applied physicsX-ray and gamma ray detectors; CdZnTe pixel detectors; charge sharing; charge losses; charge-sharing correction; spectroscopic X-ray imagingRadiationPixelbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorCdZnTe pixel detectors charge losses charge sharing charge-sharing correction spectroscopic X-ray imaging X-ray and gamma ray detectors021001 nanoscience & nanotechnologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)SynchrotronCadmium zinc telluridechemistry0210 nano-technologyPixelizationbusinessJournal of synchrotron radiation
researchProduct

Development of a 3D CZT detector prototype for Laue Lens telescope

2010

We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (similar to 19x8 mm(2) area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coord…

CDTE DETECTORSPhysicsPhysics::Instrumentation and Detectorsbusiness.industryDetectorVoltage dividerGamma ray spectroscopySTRIPSCZT detectorCZT detectors 3D detectors Laue lensCathodeParticle detectorlaw.inventionAnodeLens (optics)TelescopeOpticsHard X- and soft gamma-ray astronomy3D imagingDrift striplawCDZNTEbusiness
researchProduct

Digital fast pulse shape and height analysis on cadmium-zinc-telluride arrays for high-flux energy-resolved X-ray imaging.

2017

Cadmium-zinc-telluride (CZT) arrays with photon-counting and energy-resolving capabilities are widely proposed for next-generation X-ray imaging systems. This work presents the performance of a 2â...mm-thick CZT pixel detector, with pixel pitches of 500 and 250â...μm, dc coupled to a fast and low-noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to digitize and process continuously the signals from each output ASIC channel. The digital system performs on-line fast pulse shape and height analysis, with a low dead-time and reasonable energy resolution at both low and high fluxes. The spectroscopic response …

0301 basic medicine030103 biophysicsNuclear and High Energy PhysicsMaterials sciencePreamplifierInstrumentationenergy-resolved photon counting detectordigital pulse shape analysienergy-resolved photon counting detectors01 natural sciencesCharge sharing03 medical and health scienceschemistry.chemical_compoundOpticshigh flux0103 physical sciencesInstrumentationX-ray and ?-ray detectorsNuclear and High Energy Physiccharge sharingRadiationdigital pulse shape analysisPixel010308 nuclear & particles physicsbusiness.industryCdZnTe detectorsCdZnTe detectorSettore FIS/01 - Fisica SperimentaleDetectorX-ray and γ-ray detectorBiasingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc telluridechemistryDirect couplingbusinessJournal of synchrotron radiation
researchProduct

Recent advances in the development of high-resolution 3D cadmium-zinc-telluride drift strip detectors.

2020

In the last two decades, great efforts have been made in the development of 3D cadmium–zinc–telluride (CZT) detectors operating at room temperature for gamma-ray spectroscopic imaging. This work presents the spectroscopic performance of new high-resolution CZT drift strip detectors, recently developed at IMEM-CNR of Parma (Italy) in collaboration with due2lab (Italy). The detectors (19.4 mm × 19.4 mm × 6 mm) are organized into collecting anode strips (pitch of 1.6 mm) and drift strips (pitch of 0.4 mm) which are negatively biased to optimize electron charge collection. The cathode is divided into strips orthogonal to the anode strips with a pitch of 2 mm. Dedicated pulse processing analysis…

Nuclear and High Energy PhysicsMaterials sciencePhysics::Instrumentation and Detectors030303 biophysics3D CdZnTe detectorsSTRIPS01 natural sciencesElectric chargelaw.invention03 medical and health scienceschemistry.chemical_compounddrift strip detectorslaw0103 physical sciencesInstrumentation0303 health sciencesRadiation010308 nuclear & particles physicsbusiness.industryDetectorElectrostatic inductionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CathodeCadmium zinc tellurideAnodeFull width at half maximumX-ray and gamma-ray detectorschemistryX-ray and gamma-ray detectors; 3D CdZnTe detectors; drift strip detectors; spectroscopic X-ray and gamma-ray imagingOptoelectronicsbusinessspectroscopic X-ray and gamma-ray imagingJournal of synchrotron radiation
researchProduct