6533b7ddfe1ef96bd12749a8
RESEARCH PRODUCT
Multifunctionality of F-rich nucleoporins
Miao YuEdward A. LemkeNike HeinßMikhail E. Sushkinsubject
CytoplasmProtein FoldingDNA RepairPhenylalanineAmino Acid MotifsActive Transport Cell NucleusGlycineIntrinsically disordered proteinsBiochemistryArticle03 medical and health sciences0302 clinical medicineAnimalsHumansCell LineageCiliaNuclear pore030304 developmental biologyCell Nucleus0303 health sciencesChemistryNeurodegenerative DiseasesIntrinsically Disordered ProteinsNuclear Pore Complex ProteinsMacromolecular assemblyProtein TransportGene Expression RegulationNucleocytoplasmic TransportNuclear PoreBiophysicsNucleoporinHydrophobic and Hydrophilic Interactions030217 neurology & neurosurgeryBiological networkdescription
Nucleoporins (Nups) represent a range of proteins most known for composing the macromolecular assembly of the nuclear pore complex (NPC). Among them, the family of intrinsically disordered proteins (IDPs) phenylalanine-glycine (FG) rich Nups, form the permeability barrier and coordinate the high-speed nucleocytoplasmic transport in a selective way. Those FG-Nups have been demonstrated to participate in various biological processes besides nucleocytoplasmic transport. The high number of accessible hydrophobic motifs of FG-Nups potentially gives rise to this multifunctionality, enabling them to form unique microenvironments. In this review, we discuss the multifunctionality of disordered and F-rich Nups and the diversity of their localizations, emphasizing the important roles of those Nups in various regulatory and metabolic processes.
year | journal | country | edition | language |
---|---|---|---|---|
2020-09-18 | Biochemical Society Transactions |