6533b7defe1ef96bd1276570

RESEARCH PRODUCT

Multidimensional Borg–Levinson theorems for unbounded potentials

Valter Pohjola

subject

Pure mathematicsGeneral MathematicsOperator (physics)010102 general mathematicsMathematics::Spectral TheoryEigenfunction01 natural sciencesOmega010101 applied mathematicsDirichlet eigenvalueBoundary data0101 mathematicsSpectral dataFinite setEigenvalues and eigenvectorsMathematics

description

We prove that the Dirichlet eigenvalues and Neumann boundary data of the corresponding eigenfunctions of the operator $-\Delta + q$, determine the potential $q$, when $q \in L^{n/2}(\Omega,\mathbb{R})$ and $n \geq 3$. We also consider the case of incomplete spectral data, in the sense that the above spectral data is unknown for some finite number of eigenvalues. In this case we prove that the potential $q$ is uniquely determined for $q \in L^p(\Omega,\mathbb{R})$ with $p=n/2$, for $n\geq4$ and $p>n/2$, for $n=3$.

https://doi.org/10.3233/asy-181484