0000000000427232

AUTHOR

Valter Pohjola

0000-0002-6441-7628

showing 3 related works from this author

Multidimensional Borg–Levinson theorems for unbounded potentials

2018

We prove that the Dirichlet eigenvalues and Neumann boundary data of the corresponding eigenfunctions of the operator $-\Delta + q$, determine the potential $q$, when $q \in L^{n/2}(\Omega,\mathbb{R})$ and $n \geq 3$. We also consider the case of incomplete spectral data, in the sense that the above spectral data is unknown for some finite number of eigenvalues. In this case we prove that the potential $q$ is uniquely determined for $q \in L^p(\Omega,\mathbb{R})$ with $p=n/2$, for $n\geq4$ and $p>n/2$, for $n=3$.

Pure mathematicsGeneral MathematicsOperator (physics)010102 general mathematicsMathematics::Spectral TheoryEigenfunction01 natural sciencesOmega010101 applied mathematicsDirichlet eigenvalueBoundary data0101 mathematicsSpectral dataFinite setEigenvalues and eigenvectorsMathematicsAsymptotic Analysis
researchProduct

Dimension bounds in monotonicity methods for the Helmholtz equation

2019

The article [B. Harrach, V. Pohjola, and M. Salo, Anal. PDE] established a monotonicity inequality for the Helmholtz equation and presented applications to shape detection and local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scattering coefficients satisfy $q_1 \leq q_2$, then the corresponding Neumann-to-Dirichlet operators satisfy $\Lambda(q_1) \leq \Lambda(q_2)$ up to a finite-dimensional subspace. Here we improve the bounds for the dimension of this space. In particular, if $q_1$ and $q_2$ have the same number of positive Neumann eigenvalues, then the finite-dimensional space is trivial. peerReviewed

Helmholtz equationMathematics::Number Theorymontonicity methodMonotonic function01 natural sciencesinversio-ongelmatMathematics::Numerical AnalysisMathematics - Spectral TheoryMathematics - Analysis of PDEsDimension (vector space)FOS: MathematicsHelmholtz equationUniqueness0101 mathematicsSpectral Theory (math.SP)Mathematicsinverse problemsApplied Mathematics010102 general mathematicsMathematical analysisInverse problemMathematics::Spectral Theory010101 applied mathematicsComputational MathematicsNonlinear Sciences::Exactly Solvable and Integrable Systems35R30AnalysisAnalysis of PDEs (math.AP)
researchProduct

Monotonicity and local uniqueness for the Helmholtz equation

2017

This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local…

Helmholtz equationMathematics::Number Theorylocalized potentialsBoundary (topology)Monotonic function01 natural sciencesDomain (mathematical analysis)inversio-ongelmat35R30 35J05symbols.namesakeMathematics - Analysis of PDEs35J050103 physical sciencesFOS: MathematicsUniquenessHelmholtz equation0101 mathematicsinverse coefficient problemsEigenvalues and eigenvectorsMathematicsNumerical AnalysisApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Spectral Theorymonotonicitystationary Schrödinger equation35R30Helmholtz free energyBounded functionsymbols010307 mathematical physicsmonotonicity localized potentialsAnalysisAnalysis of PDEs (math.AP)
researchProduct