Multidimensional Borg–Levinson theorems for unbounded potentials
We prove that the Dirichlet eigenvalues and Neumann boundary data of the corresponding eigenfunctions of the operator $-\Delta + q$, determine the potential $q$, when $q \in L^{n/2}(\Omega,\mathbb{R})$ and $n \geq 3$. We also consider the case of incomplete spectral data, in the sense that the above spectral data is unknown for some finite number of eigenvalues. In this case we prove that the potential $q$ is uniquely determined for $q \in L^p(\Omega,\mathbb{R})$ with $p=n/2$, for $n\geq4$ and $p>n/2$, for $n=3$.
Dimension bounds in monotonicity methods for the Helmholtz equation
The article [B. Harrach, V. Pohjola, and M. Salo, Anal. PDE] established a monotonicity inequality for the Helmholtz equation and presented applications to shape detection and local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scattering coefficients satisfy $q_1 \leq q_2$, then the corresponding Neumann-to-Dirichlet operators satisfy $\Lambda(q_1) \leq \Lambda(q_2)$ up to a finite-dimensional subspace. Here we improve the bounds for the dimension of this space. In particular, if $q_1$ and $q_2$ have the same number of positive Neumann eigenvalues, then the finite-dimensional space is trivial. peerReviewed
Monotonicity and local uniqueness for the Helmholtz equation
This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local…