6533b85ffe1ef96bd12c2775

RESEARCH PRODUCT

Monotonicity and local uniqueness for the Helmholtz equation

Bastian HarrachMikko SaloValter Pohjola

subject

Helmholtz equationMathematics::Number Theorylocalized potentialsBoundary (topology)Monotonic function01 natural sciencesDomain (mathematical analysis)inversio-ongelmat35R30 35J05symbols.namesakeMathematics - Analysis of PDEs35J050103 physical sciencesFOS: MathematicsUniquenessHelmholtz equation0101 mathematicsinverse coefficient problemsEigenvalues and eigenvectorsMathematicsNumerical AnalysisApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Spectral Theorymonotonicitystationary Schrödinger equation35R30Helmholtz free energyBounded functionsymbols010307 mathematical physicsmonotonicity localized potentialsAnalysisAnalysis of PDEs (math.AP)

description

This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local uniqueness result that two coefficient functions $q_1$ and $q_2$ can be distinguished by partial boundary data if there is a neighborhood of the boundary where $q_1\geq q_2$ and $q_1\not\equiv q_2$.

10.2140/apde.2019.12.1741https://projecteuclid.org/euclid.apde/1564538423