6533b81ffe1ef96bd1277de5

RESEARCH PRODUCT

The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance

John W. BlanchardTao WangPeter W. GrahamGary P. CentersAntoine GarconDerek F. Jackson KimballAlexander O. SushkovMarina Gil SendraDeniz AybasNataniel L. FigueroaDmitry BudkerSurjeet RajendranTeng WuArne WickenbrockLutz Trahms

subject

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsMagnetometerMaterials Science (miscellaneous)Dark matterFOS: Physical sciencesApplied Physics (physics.app-ph)7. Clean energy01 natural scienceslaw.inventionHigh Energy Physics - Phenomenology (hep-ph)Nuclear magnetic resonancelaw0103 physical sciencesElectrical and Electronic Engineering010306 general physicsAxionPhysicsQuantum PhysicsCOSMIC cancer database010308 nuclear & particles physicsBandwidth (signal processing)RangingInstrumentation and Detectors (physics.ins-det)Physics - Applied PhysicsNuclear magnetic resonance spectroscopyAtomic and Molecular Physics and OpticsBaryonHigh Energy Physics - PhenomenologyPhysics - Data Analysis Statistics and ProbabilityQuantum Physics (quant-ph)Data Analysis Statistics and Probability (physics.data-an)

description

The Cosmic Axion Spin Precession Experiment (CASPEr) is a nuclear magnetic resonance experiment (NMR) seeking to detect axion and axion-like particles which could make up the dark matter present in the universe. We review the predicted couplings of axions and axion-like particles with baryonic matter that enable their detection via NMR. We then describe two measurement schemes being implemented in CASPEr. The first method, presented in the original CASPEr proposal, consists of a resonant search via continuous-wave NMR spectroscopy. This method offers the highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz, corresponding to masses $ m_{\rm a} \sim 10^{-14}$--$10^{-6}$ eV. Sub-Hz frequencies are typically difficult to probe with NMR due to the diminishing sensitivity of magnetometers in this region. To circumvent this limitation, we suggest new detection and data processing modalities. We describe a non-resonant frequency-modulation detection scheme, enabling searches from mHz to Hz frequencies ($m_{\rm a} \sim 10^{-17}$--$10^{-14} $ eV), extending the detection bandwidth by three decades.

https://doi.org/10.1088/2058-9565/aa9861