6533b81ffe1ef96bd127874e

RESEARCH PRODUCT

Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines

Ugur SahinChristoph HuberMathias VormehrMustafa DikenSebastian KreiterÖZlem Türeci

subject

0301 basic medicineCancer ResearchBioinformaticsmedicine.disease_causeMajor histocompatibility complexCancer VaccinesEpitopeTranslational Research BiomedicalEpitopesGenetic Heterogeneity03 medical and health sciences0302 clinical medicineAntigenAntigens NeoplasmNeoplasmsAnimalsHumansMedicineClinical Trials as TopicMutationbiologybusiness.industryGenetic heterogeneityGenetic VariationCancermedicine.diseaseAntigenic VariationVaccination030104 developmental biologyOncology030220 oncology & carcinogenesisMutationbiology.proteinCancer vaccinebusiness

description

Abstract Somatic mutations binding to the patient's MHC and recognized by autologous T cells (neoepitopes) are ideal cancer vaccine targets. They combine a favorable safety profile due to a lack of expression in healthy tissues with a high likelihood of immunogenicity, as T cells recognizing neoepitopes are not shaped by central immune tolerance. Proteins mutated in cancer (neoantigens) shared by patients have been explored as vaccine targets for many years. Shared (“public”) mutations, however, are rare, as the vast majority of cancer mutations in a given tumor are unique for the individual patient. Recently, the novel concept of truly individualized cancer vaccination emerged, which exploits the vast source of patient-specific “private” mutations. Concurrence of scientific advances and technological breakthroughs enables the rapid, cost-efficient, and comprehensive mapping of the “mutanome,” which is the entirety of somatic mutations in an individual tumor, and the rational selection of neoepitopes. How to transform tumor mutanome data to actionable knowledge for tailoring individualized vaccines “on demand” has become a novel research field with paradigm-shifting potential. This review gives an overview with particular focus on the clinical development of such vaccines. Clin Cancer Res; 22(8); 1885–96. ©2016 AACR. See all articles in this CCR Focus section, “Opportunities and Challenges in Cancer Immunotherapy.”

https://doi.org/10.1158/1078-0432.ccr-15-1509