6533b81ffe1ef96bd127886f
RESEARCH PRODUCT
Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects, cellular uptake and DNA-interaction
Alessio TerenziIngo OttYasamin DabiriBernhard K. KepplerWojciech StreciwilkStefan WölflXinlai ChengJulia E. BandowPascal ProchnowLaura A. Hagersubject
Intercalation (chemistry)Fluorescent DyeLigands01 natural sciencesAntineoplastic Agentchemistry.chemical_compoundNeoplasmsDrug DiscoveryMoietyCell DeathBacterial InfectionsGeneral MedicineIntercalating AgentsNaphthalimideAnti-Bacterial AgentsRutheniumNaphthalimidesSettore CHIM/03 - Chimica Generale E InorganicaHumanStereochemistrychemistry.chemical_elementAntineoplastic AgentsLigandCarbene010402 general chemistryG-quadruplexBacterial InfectionRutheniumRhodiumCell Line TumorAnti-Bacterial AgentOrganometallic CompoundsG-QuadruplexeHumansRhodiumBioorganometallicFluorescent DyesGroup 2 organometallic chemistryCell ProliferationPharmacologyOrganometallic CompoundBacteria010405 organic chemistryLigandOrganic ChemistryIntercalating Agent0104 chemical sciencesG-QuadruplexeschemistryNeoplasmDrug Screening Assays AntitumorCarbenedescription
Fluorescent 4-ethylthio-1,8-naphthalimides containing rhodium(I) N-heterocyclic carbene (NHC) and ruthenium (II) NHC fragments were synthesised and evaluated for their antiproliferative effects, cellular uptake and DNA-binding activity. Both types of organometallics triggered ligand dependent efficient cytotoxic effects against tumor cells with the rhodium(I) NHC derivatives causing stronger effects than the ruthenium (II) NHC analogues. Antiproliferative effects could also be observed against several pathogenic Gram-positive bacterial strains, whereas the growth of Gram-negative bacteria was not substantially affected. Cellular uptake was confirmed by atomic absorption spectroscopy as well as by fluorescence microscopy indicating a general ligand dependent accumulation in the cells. An in-depth study on the interaction with DNA confirmed insertion of the naphthalimide moiety between the planar bases of B-DNA via an intercalation mechanism, as well as its stacking on top of the quartets of G-quadruplex structures. Furthermore, additional coordinative binding of the organometallic complexes to the model DNA base 9-ethylguanine could be detected. The studied compounds thus represent promising bioorganometallics featuring strong pharmacological effects in combination with excellent cellular imaging properties.
year | journal | country | edition | language |
---|---|---|---|---|
2018-08-01 |