6533b820fe1ef96bd1279092
RESEARCH PRODUCT
The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis.
Corina Roman-filipAdrian BalasaAnca MotataianuDoina ManuRodica BalasaLaura Barcuteansubject
ChemokineEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisImmunologyInflammationBlood–brain barrierTight JunctionsMyelinCell MovementmedicineImmunology and AllergyAnimalsHumansAxonbiologybusiness.industryMultiple sclerosisNeurodegenerationExperimental autoimmune encephalomyelitisEndothelial CellsGeneral MedicineTh1 Cellsmedicine.diseaseCell biologymedicine.anatomical_structureBlood-Brain Barrierbiology.proteinCytokinesTh17 Cellsmedicine.symptombusinessdescription
Th17 cells, known as a highly pro-inflammatory subtype of Th cells, are involved very early in numerous aspects of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) neuropathology. A crucial event for the formation and accumulation of MS lesions is represented by the disruption of the blood brain barrier (BBB) in relapsing-remitting MS. Th17 cells also contribute to the progression of MS/EAE. These events will allow for the passage of inflammatory cells into the brain. Secondary to this, increased recruitment of neutrophils occurs, followed by increased protease activity that will continue to attract macrophages and monocytes, leading to brain inflammation with sustained myelin and axon damage. This review focuses mainly on the role of Th17 cells in penetrating the BBB and on their important effects on BBB disruption via their main secretion products, IL-17 and IL-22. We present the morphological aspects of Th17 cells that allow for intercellular contacts with BBB endothelial cells and the functional/secretory particularities of Th17 cells that allow for intercellular communications that enhance Th17 entry into the CNS. The cytokines and chemokines involved in these processes are described. In conclusion, Th17 cells can efficiently cross the BBB using pathways distinct from those used by Th1 cells, leading to BBB disruption, the activation of other inflammatory cells and neurodegeneration in MS patients.
year | journal | country | edition | language |
---|---|---|---|---|
2019-08-05 | Human immunology |