6533b820fe1ef96bd127925d
RESEARCH PRODUCT
The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow
Valeria RicciLaurent DesvillettesFrançois GolseFrançois Golsesubject
Stokes equation01 natural sciencesHomogenization (chemistry)Navier-Stokes equationPhysics::Fluid DynamicsMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Boundary value problem0101 mathematicsMathematical Physics(MSC) 35Q30 35B27 76M50Particle systemPhysicsHomogenization010102 general mathematicsMathematical analysis35Q30 35B27 76M50Stokes equationsStatistical and Nonlinear Physics010101 applied mathematicsFlow velocityDragSuspension FlowsBounded functionCompressibilityBall (bearing)Navier-Stokes equationsAnalysis of PDEs (math.AP)description
We propose a mathematical derivation of Brinkman's force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Omega subset of R-3 for the velocity field u of an incompressible fluid with kinematic viscosity v and density 1. Brinkman's force consists of a source term 6 pi rvj where j is the current density of the particles, and of a friction term 6 pi vpu where rho is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Omega minus the disjoint union of N balls of radius epsilon = 1/N in the large N limit with no-slip boundary condition. The number density p and current density j are obtained from the limiting phase space empirical measure 1/N Sigma(1 <= k <= N)delta(xk,vk), where x(k) is the center of the k-th hall and v(k) its instantaneous velocity. This can be seen as a generalization of Allaire's result in [Arch. Ration. Mech. Anal. 113:209-259, 1991] who considered the case of periodically distributed x(k)S with v(k) = 0, and our proof is based on slightly simpler though similar homogenization arguments. Similar equations are used for describing the fluid phase in various models for sprays.
year | journal | country | edition | language |
---|---|---|---|---|
2008-06-01 |