6533b820fe1ef96bd127a278

RESEARCH PRODUCT

On Severi Type Inequalities for Irregular Surfaces

Xin LuKang Zuo

subject

ConjectureMinimal surfaceGeneral Mathematics010102 general mathematicsCharacterization (mathematics)Type (model theory)01 natural sciencesCombinatoricsSimple (abstract algebra)Gravitational singularity0101 mathematicsAbelian groupMathematicsResolution (algebra)

description

Let X be a minimal surface of general type and maximal Albanese dimension with irregularity q ≥ 2. We show that K2 X ≥ 4χ(OX) + 4(q − 2) if K2 X < 9 2 χ(OX), and also obtain the characterization of the equality. As a consequence, we prove a conjecture of Manetti on the geography of irregular surfaces if K2 X ≥ 36(q−2) or χ(OX) ≥ 8(q−2), and we also prove a conjecture that the surfaces of general type and maximal Albanese dimension with K2 X = 4χ(OX) are exactly the resolution of double covers of abelian surfaces branched over ample divisors with at worst simple singularities.

https://doi.org/10.1093/imrn/rnx127