6533b820fe1ef96bd127a278
RESEARCH PRODUCT
On Severi Type Inequalities for Irregular Surfaces
Xin LuKang Zuosubject
ConjectureMinimal surfaceGeneral Mathematics010102 general mathematicsCharacterization (mathematics)Type (model theory)01 natural sciencesCombinatoricsSimple (abstract algebra)Gravitational singularity0101 mathematicsAbelian groupMathematicsResolution (algebra)description
Let X be a minimal surface of general type and maximal Albanese dimension with irregularity q ≥ 2. We show that K2 X ≥ 4χ(OX) + 4(q − 2) if K2 X < 9 2 χ(OX), and also obtain the characterization of the equality. As a consequence, we prove a conjecture of Manetti on the geography of irregular surfaces if K2 X ≥ 36(q−2) or χ(OX) ≥ 8(q−2), and we also prove a conjecture that the surfaces of general type and maximal Albanese dimension with K2 X = 4χ(OX) are exactly the resolution of double covers of abelian surfaces branched over ample divisors with at worst simple singularities.
year | journal | country | edition | language |
---|---|---|---|---|
2017-06-22 | International Mathematics Research Notices |