0000000000150381

AUTHOR

Kang Zuo

The Oort conjecture on Shimura curves in the Torelli locus of curves

Oort has conjectured that there do not exist Shimura curves contained generically in the Torelli locus of genus-$g$ curves when $g$ is large enough. In this paper we prove the Oort conjecture for Shimura curves of Mumford type and Shimura curves parameterizing principally polarized $g$-dimensional abelian varieties isogenous to $g$-fold self-products of elliptic curves for $g>11$. We also prove that there do not exist Shimura curves contained generically in the Torelli locus of hyperelliptic curves of genus $g>7$. As a consequence, we obtain a finiteness result regarding smooth genus-$g$ curves with completely decomposable Jacobians, which is related to a question of Ekedahl and Serre.

research product

Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups

Let $k $ be the algebraic closure of a finite field of odd characteristic $p$ and $X$ a smooth projective scheme over the Witt ring $W(k)$ which is geometrically connected in characteristic zero. We introduce the notion of Higgs-de Rham flow and prove that the category of periodic Higgs-de Rham flows over $X/W(k)$ is equivalent to the category of Fontaine modules, hence further equivalent to the category of crystalline representations of the \'{e}tale fundamental group $\pi_1(X_K)$ of the generic fiber of $X$, after Fontaine-Laffaille and Faltings. Moreover, we prove that every semistable Higgs bundle over the special fiber $X_k$ of $X$ of rank $\leq p$ initiates a semistable Higgs-de Rham …

research product

Nonabelian Hodge theory in positive characteristic via exponential twisting

research product

Corrigendum to “The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense” [Adv. Math. 272 (2015) 699–742]

research product

Deuring’s mass formula of a Mumford family

We study the Newton polygon jumping locus of a Mumford family in char p p . Our main result says that, under a mild assumption on p p , the jumping locus consists of only supersingular points and its cardinality is equal to ( p r − 1 ) ( g − 1 ) (p^r-1)(g-1) , where r r is the degree of the defining field of the base curve of a Mumford family in char p p and g g is the genus of the curve. The underlying technique is the p p -adic Hodge theory.

research product

On Severi Type Inequalities for Irregular Surfaces

Let X be a minimal surface of general type and maximal Albanese dimension with irregularity q ≥ 2. We show that K2 X ≥ 4χ(OX) + 4(q − 2) if K2 X < 9 2 χ(OX), and also obtain the characterization of the equality. As a consequence, we prove a conjecture of Manetti on the geography of irregular surfaces if K2 X ≥ 36(q−2) or χ(OX) ≥ 8(q−2), and we also prove a conjecture that the surfaces of general type and maximal Albanese dimension with K2 X = 4χ(OX) are exactly the resolution of double covers of abelian surfaces branched over ample divisors with at worst simple singularities.

research product

The Oort conjecture on Shimura curves in the Torelli locus of hyperelliptic curves

Abstract Oort has conjectured that there do not exist Shimura varieties of dimension >0 contained generically in the Torelli locus of genus-g curves when g is sufficiently large. In this paper we prove the analogue of this conjecture for Shimura curves with respect to the hyperelliptic Torelli locus of genus g > 7 .

research product

Special Families of Curves, of Abelian Varieties, and of Certain Minimal Manifolds over Curves

This survey article discusses some results on the structure of families f:V-->U of n-dimensional manifolds over quasi-projective curves U, with semistable reduction over a compactification Y of U. We improve the Arakelov inequality for the direct images of powers of the dualizing sheaf. For families of Abelian varieties we recall the characterization of Shimura curves by Arakelov equalities. For families of curves we recall the characterization of Teichmueller curves in terms of the existence of certain sub variation of Hodge structures. We sketch the proof that the moduli scheme of curves of genus g>1 can not contain compact Shimura curves, and that it only contains a non-compact Shimura c…

research product

An Arakelov inequality in characteristic p and upper bound of p-rank zero locus

In this paper we show an Arakelov inequality for semi-stable families of algebraic curves of genus $g\geq 1$ over characteristic $p$ with nontrivial Kodaira-Spencer maps. We apply this inequality to obtain an upper bound of the number of algebraic curves of $p-$rank zero in a semi-stable family over characteristic $p$ with nontrivial Kodaira-Spencer map in terms of the genus of a general closed fiber, the genus of the base curve and the number of singular fibres. An extension of the above results to smooth families of Abelian varieties over $k$ with $W_2$-lifting assumption is also included.

research product

On the slope of hyperelliptic fibrations with positive relative irregularity

Let $f:\, S \to B$ be a locally non-trivial relatively minimal fibration of hyperelliptic curves of genus $g\geq 2$ with relative irregularity $q_f$. We show a sharp lower bound on the slope $\lambda_f$ of $f$. As a consequence, we prove a conjecture of Barja and Stoppino on the lower bound of $\lambda_f$ as an increasing function of $q_f$ in this case, and we also prove a conjecture of Xiao on the ampleness of the direct image of the relative canonical sheaf if $\lambda_f<4$.

research product

Harmonic maps and singularities of period mappings

We use simple methods from harmonic maps to investigate singularities of period mappings at infinity. More precisely, we derive a harmonic map version of Schmid’s nilpotent orbit theorem. MSC Classification 14M27, 58E20

research product

On the Oort conjecture for Shimura varieties of unitary and orthogonal types

In this paper we study the Oort conjecture on Shimura subvarieties contained generically in the Torelli locus in the Siegel modular variety $\mathcal{A}_g$. Using the poly-stability of Higgs bundles on curves and the slope inequality of Xiao on fibred surfaces, we show that a Shimura curve $C$ is not contained generically in the Torelli locus if its canonical Higgs bundles contains a unitary Higgs subbundle of rank at least $(4g+2)/5$. From this we prove that a Shimura subvariety of $\mathbf{SU}(n,1)$-type is not contained generically in the Torelli locus when a numerical inequality holds, which involves the genus $g$, the dimension $n+1$, the degree $2d$ of CM field of the Hermitian space,…

research product

On Shimura subvarieties generated by families of abelian covers ofP1

We investigate the occurrence of Shimura (special) subvarieties in the locus of Jacobians of abelian Galois covers of P1 in Ag and give classifications of families of such covers that give rise to Shimura subvarieties in the Torelli locus Tg inside Ag. Our methods are based on Moonen–Oort works as well as characteristic p techniques of Dwork and Ogus and Monodromy computations.

research product

On Higgs bundles over Shimura varieties of ball quotient type

We prove the generic exclusion of certain Shimura varieties of unitary and orthogonal types from the Torelli locus. The proof relies on a slope inequality on surface fibration due to G. Xiao, and the main result implies that certain Shimura varieties only meet the Torelli locus in dimension zero.

research product

On the minimal number of singular fibers with non-compact Jacobians for families of curves over P1

Abstract Let f : X → P 1 be a non-isotrivial family of semi-stable curves of genus g ≥ 1 defined over an algebraically closed field k. Denote by s nc the number of the singular fibers whose Jacobians are non-compact. We prove that s nc ≥ 5 if k = C and g ≥ 5 ; we also prove that s nc ≥ 4 if char ( k ) > 0 and the relative Jacobian of f is non-smooth.

research product

The cohomology of a variation of polarized Hodge structures over a quasi-compact Kähler manifold

In this article, we consider the cohomologies with coefficients in a variation of polarized Hodge structures on a quasi-compact Kaehler manifold. We show that the L 2 L^2 -Dolbeault cohomology can be identified with the L 2 L^2 cohomology; we also give several direct applications of the result above.

research product

Numerical bounds for semi-stable families of curves or of certain higher-dimensional manifolds

Given an open subset U U of a projective curve Y Y and a smooth family f : V → U f:V\to U of curves, with semi-stable reduction over Y Y , we show that for a subvariation V \mathbb {V} of Hodge structures of R 1 f ∗ C V R^1f_*\mathbb {C}_V with rank ( V ) &gt; 2 \textrm {rank} (\mathbb {V})&gt;2 the Arakelov inequality must be strict. For families of n n -folds we prove a similar result under the assumption that the ( n , 0 ) (n,0) component of the Higgs bundle of V \mathbb {V} defines a birational map.

research product

On the gonality and the slope of a fibered surface

Abstract Let f : X → B be a locally non-trivial relatively minimal fibration of curves of genus g ≥ 2 . We obtain a lower bound of the slope λ ( f ) increasing with the gonality of the general fiber of f. In particular, we show that λ ( f ) ≥ 4 provided that f is non-hyperelliptic and g ≥ 16 .

research product

Projective Crystalline Representations of \'Etale Fundamental Groups and Twisted Periodic Higgs-de Rham Flow

This paper contains three new results. {\bf 1}.We introduce new notions of projective crystalline representations and twisted periodic Higgs-de Rham flows. These new notions generalize crystalline representations of \'etale fundamental groups introduced in [7,10] and periodic Higgs-de Rham flows introduced in [19]. We establish an equivalence between the categories of projective crystalline representations and twisted periodic Higgs-de Rham flows via the category of twisted Fontaine-Faltings module which is also introduced in this paper. {\bf 2.}We study the base change of these objects over very ramified valuation rings and show that a stable periodic Higgs bundle gives rise to a geometric…

research product

A note on the characteristic $p$ nonabelian Hodge theory in the geometric case

We provide a construction of associating a de Rham subbundle to a Higgs subbundle in characteristic $p$ in the geometric case. As applications, we obtain a Higgs semistability result and a $W_2$-unliftable result.

research product

The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense

Let $\mathcal{M}_{n,2n+2}$ be the coarse moduli space of CY manifolds arising from a crepant resolution of double covers of $\mathbb{P}^n$ branched along $2n+2$ hyperplanes in general position. We show that the monodromy group of a good family for $\mathcal{M}_{n,2n+2}$ is Zariski dense in the corresponding symplectic or orthogonal group if $n\geq 3$. In particular, the period map does not give a uniformization of any partial compactification of the coarse moduli space as a Shimura variety whenever $n\geq 3$. This disproves a conjecture of Dolgachev. As a consequence, the fundamental group of the coarse moduli space of $m$ ordered points in $\mathbb{P}^n$ is shown to be large once it is not…

research product

Complex multiplication, Griffiths-Yukawa couplings, and rigidity for families of hypersurfaces

Let M(d,n) be the moduli stack of hypersurfaces of degree d &gt; n in the complex projective n-space, and let M(d,n;1) be the sub-stack, parameterizing hypersurfaces obtained as a d fold cyclic covering of the projective n-1 space, ramified over a hypersurface of degree d. Iterating this construction, one obtains M(d,n;r). We show that M(d,n;1) is rigid in M(d,n), although the Griffiths-Yukawa coupling degenerates for d&lt;2n. On the other hand, for all d&gt;n the sub-stack M(d,n;2) deforms. We calculate the exact length of the Griffiths-Yukawa coupling over M(d,n;r), and we construct a 4-dimensional family of quintic hypersurfaces, and a dense set of points in the base, where the fibres ha…

research product

On CM points away from the Torelli locus

research product