6533b858fe1ef96bd12b6233

RESEARCH PRODUCT

Numerical bounds for semi-stable families of curves or of certain higher-dimensional manifolds

Kang ZuoEckart Viehweg

subject

CombinatoricsProjective curveAlgebra and Number TheoryReduction (recursion theory)Hodge bundleComponent (group theory)Geometry and TopologyRank (differential topology)MathematicsHiggs bundle

description

Given an open subset U U of a projective curve Y Y and a smooth family f : V → U f:V\to U of curves, with semi-stable reduction over Y Y , we show that for a subvariation V \mathbb {V} of Hodge structures of R 1 f ∗ C V R^1f_*\mathbb {C}_V with rank ( V ) > 2 \textrm {rank} (\mathbb {V})>2 the Arakelov inequality must be strict. For families of n n -folds we prove a similar result under the assumption that the ( n , 0 ) (n,0) component of the Higgs bundle of V \mathbb {V} defines a birational map.

https://doi.org/10.1090/s1056-3911-05-00423-6