6533b858fe1ef96bd12b6233
RESEARCH PRODUCT
Numerical bounds for semi-stable families of curves or of certain higher-dimensional manifolds
Kang ZuoEckart Viehwegsubject
CombinatoricsProjective curveAlgebra and Number TheoryReduction (recursion theory)Hodge bundleComponent (group theory)Geometry and TopologyRank (differential topology)MathematicsHiggs bundledescription
Given an open subset U U of a projective curve Y Y and a smooth family f : V → U f:V\to U of curves, with semi-stable reduction over Y Y , we show that for a subvariation V \mathbb {V} of Hodge structures of R 1 f ∗ C V R^1f_*\mathbb {C}_V with rank ( V ) > 2 \textrm {rank} (\mathbb {V})>2 the Arakelov inequality must be strict. For families of n n -folds we prove a similar result under the assumption that the ( n , 0 ) (n,0) component of the Higgs bundle of V \mathbb {V} defines a birational map.
year | journal | country | edition | language |
---|---|---|---|---|
2005-11-30 | Journal of Algebraic Geometry |