6533b821fe1ef96bd127ac3d

RESEARCH PRODUCT

The PLVC display color characterization model revisited

Jean-baptiste ThomasJean-baptiste ThomasPierre GoutonJon Yngve HardebergIrène Foucherot

subject

Liquid-crystal displayComputational complexity theoryCathode ray tubeComputer scienceGeneral Chemical EngineeringHuman Factors and ErgonomicsGeneral Chemistrylaw.inventionDisplay devicePiecewise linear functionCRTSlawComputer graphics (images)Metric (mathematics)ChromaticityAlgorithm

description

This work proposes a study of the Piecewise Linear assuming Variation in Chromaticity (PLVC) dis- play color characterization model. This model has not been widely used as the improved accuracy compared with the more common PLCC (Piecewise Linear assuming Chromaticity Constancy) model is not significant for CRT (Cathode Ray Tube) display technology, and it requires more computing power than this model. With today's computers, computational complexity is less of a problem, and today's display technologies show a different colori- metric behavior than CRTs. The main contribution of this work is to generalize the PLVC model to multiprimary displays and to provide extensive experimental results and analysis for today's display technologies. We confirm and extend the results found in the literature and compare this model with classical PLCC and Gain-Offset-Gamma-Offset models. We show that using this model is highly beneficial for Liquid Crystal Displays, reducing the average error about a third for the two tested LCD projectors compared with a black corrected PLCC model, from 3.93 and 1.78 to respectively 1.41 and 0.54 DEunits. 2008 Wiley Periodi- cals, Inc. Col Res Appl, 33, 449 - 460, 2008; Published online in Wiley

https://doi.org/10.1002/col.20447