0000000000115828
AUTHOR
Jon Yngve Hardeberg
Real-time people counting system using a single video camera
This is the copy of journal's version originally published in Proc. SPIE 6811. Reprinted with permission of SPIE: http://spie.org/x10.xml?WT.svl=tn7 There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter…
Spatially variant dimensionality reduction for the visualization of multi/hyperspectral images
International audience; In this paper, we introduce a new approach for color visu- alization of multi/hyperspectral images. Unlike traditional methods, we propose to operate a local analysis instead of considering that all the pixels are part of the same population. It takes a segmentation map as an input and then achieves a dimensionality reduction adaptively inside each class of pixels. Moreover, in order to avoid unappealing discon- tinuities between regions, we propose to make use of a set of distance transform maps to weigh the mapping applied to each pixel with regard to its relative location with classes' centroids. Results on two hyperspec- tral datasets illustrate the efficiency of…
Image registration for quality assessment of projection displays
International audience; In the full reference metric based image quality assessment of projection displays, it is critical to achieve accurate and fully automatic image registration between the captured projection and its reference image in order to establish a subpixel level mapping. The preservation of geometrical order as well as the intensity and chromaticity relationships between two consecutive pixels must be maximized. The existing camera based image registration methods do not meet this requirement well. In this paper, we propose a markerless and view independent method to use an un-calibrated camera to perform the task. The proposed method including three main components: feature e…
Evaluation of the Colorimetric Performance of Single-Sensor Image Acquisition Systems Employing Colour and Multispectral Filter Array
International audience; Single-sensor colour imaging systems mostly employ a colour filter array (CFA). This enables the acquisition of a colour image by a single sensor at one exposure at the cost of reduced spatial resolution. The idea of CFA fit itself well with multispectral purposes by incorporating more than three types of filters into the array which results in multispectral filter array (MSFA). In comparison with a CFA, an MSFA trades spatial resolution for spectral resolution. A simulation was performed to evaluate the colorimetric performance of such CFA/MSFA imaging systems and investigate the trade-off between spatial resolution and spectral resolution by comparing CFA and MSFA …
Cross-Media Color Reproduction and Display Characterization
International audience; In this chapter, we present the problem of cross-media color reproduction, that is, how to achieve consistent reproduction of images in different media with different technologies. Of particular relevance for the color image processing community is displays, whose color properties have not been extensively covered in previous literature. Therefore, we go more in depth concerning how to model displays in order to achieve colorimetric consistency. The structure of this chapter is as follows: After a short introduction, we introduce the field of cross-media color reproduction, including a brief description of current standards for color management, the concept of colori…
Multispectral Imaging using a Stereo Camera: Concept, Design and Assessment
This paper proposes a one-shot six-channel multispectral color image acquisition system using a stereo camera and a pair of optical filters. The two filters from the best pair selected from among readily available filters such that they modify the sensitivities of the two cameras in such a way that they produce optimal estimation of spectral reflectance and/or color are placed in front of the two lenses of the stereo camera. The two images acquired from the stereo camera are then registered for pixel-to-pixel correspondence. The spectral reflectance and/or color at each pixel on the scene are estimated from the corresponding camera outputs in the two images. Both simulations and experiments…
Robustness of texture parameters for color texture analysis
This article proposes to deal with noisy and variable size color textures. It also proposes to deal with quantization methods and to see how such methods change final results. The method we use to analyze the robustness of the textures consists of an auto-classification of modified textures. Texture parameters are computed for a set of original texture samples and stored into a database. Such a database is created for each quantization method. Textures from the set of original samples are then modified, eventually quantized and classified according to classes determined from a precomputed database. A classification is considered incorrect if the original texture is not retrieved. This metho…
The PLVC display color characterization model revisited
This work proposes a study of the Piecewise Linear assuming Variation in Chromaticity (PLVC) dis- play color characterization model. This model has not been widely used as the improved accuracy compared with the more common PLCC (Piecewise Linear assuming Chromaticity Constancy) model is not significant for CRT (Cathode Ray Tube) display technology, and it requires more computing power than this model. With today's computers, computational complexity is less of a problem, and today's display technologies show a different colori- metric behavior than CRTs. The main contribution of this work is to generalize the PLVC model to multiprimary displays and to provide extensive experimental results…
A Variational Approach for Denoising Hyperspectral Images Corrupted by Poisson Distributed Noise
Poisson distributed noise, such as photon noise is an important noise source in multi- and hyperspectral images. We propose a variational based denoising approach, that accounts the vectorial structure of a spectral image cube, as well as the poisson distributed noise. For this aim, we extend an approach for monochromatic images, by a regularisation term, that is spectrally and spatially adaptive and preserves edges. In order to take the high computational complexity into account, we derive a Split Bregman optimisation for the proposed model. The results show the advantages of the proposed approach compared to a marginal approach on synthetic and real data.
An Adaptive Combination of Dark and Bright Channel Priors for Single Image Dehazing
Dehazing methods based on prior assumptions derived from statistical image properties fail when these properties do not hold. This is most likely to happen when the scene contains large bright areas, such as snow and sky, due to the ambiguity between the airlight and the depth information. This is the case for the popular dehazing method Dark Channel Prior. In order to improve its performance, the authors propose to combine it with the recent multiscale STRESS, which serves to estimate Bright Channel Prior. Visual and quantitative evaluations show that this method outperforms Dark Channel Prior and competes with the most robust dehazing methods, since it separates bright and dark areas and …
Saliency-Based Band Selection For Spectral Image Visu- alization
International audience; In this paper, we introduce a new band selection ap- proach for the color visualization of spectral images. Un- like traditional methods, we propose to make a selection out of a comparison of the saliency maps of the individual spectral channels. This allows to assess how different they are in terms of prominent features. A comparison metric based on Shannon's information theory at the second and third order is presented and results are subjectively and ob- jectively compared to other dimensionality reduction tech- niques on three datasets, demonstrating the efficiency of the proposed approach.
GHOST: GRADIENT HISTOGRAM OF SPECTRAL TEXTURE
International audience; A gradient-based texture feature for hyperspectral image is formulated with straightforward application to grayscale and color images. Processed in full band, GHOST is expressed as a four-dimensional probability density distribution encompassing joint metrological assessment of spectral and spatial properties. Its performance is close to Opponent Band Local Binary Pattern (OBLBP) in HyTexiLa texture classification (91 %-99 % accuracy) with feature size 0.2 % of OBLBP's.
Reflectance-based surface saliency
In this paper, we propose an original methodology allowing the computation of the saliency maps for high dimensional RTI data (Reflectance Transformation Imaging). Unlike most of the classical methods, our approach aims at devising an intrinsic visual saliency of the surface, independent of the sensor (image) and the geometry of the scene (light-object-camera). From RTI data, we use the DMD (Discrete Modal Decomposition) technique for the angular reflectance reconstruction, which we extend by a new transformation on the modal basis enabling a rotation-invariant representation of reconstructed reflectances. This orientation-invariance of the resulting reflectance shapes fosters a robust esti…
Multispectral imaging: narrow or wide band filters?
This is an Open Access article. This is the publisher’s PDF originally published in Journal of the International Colour Association: http://aic-colour-journal.org/index.php/JAIC/article/view/149 In every aspect, spectral characteristics of filters play an important role in an image acquisition system. For a colorimetric system, traditionally, it is believed that narrow-band filters give rise to higher accuracy of colour reproduction, whereas wide-band filters, such as complementary colour filters, have the advantage of higher sensitivity. In the context of multispectral image capture, the objective is very often to retrieve an estimation of the spectral reflectance of the captured objects. …
Salient Pixels and Dimensionality Reduction for Display of Multi/Hyperspectral Images
International audience; Dimensionality Reduction (DR) of spectral images is a common approach to different purposes such as visualization, noise removal or compression. Most methods such as PCA or band selection use either the entire population of pixels or a uniformly sampled subset in order to compute a projection matrix. By doing so, spatial information is not accurately handled and all the objects contained in the scene are given the same emphasis. Nonetheless, it is possible to focus the DR on the separation of specific Objects of Interest (OoI), simply by neglecting all the others. In PCA for instance, instead of using the variance of the scene in each spectral channel, we show that i…
Statistical analysis of engraving traces on a 3D digital model of prehistoric stone stelae
International audience; Studying cultural heritage artefacts, using 3D digital models, is gaining interest. It not only allows applications in documentation and visualisation, but also permits further contact-less examination. In this paper, we are presenting a statistical analysis of stone engravings based on features that were semi-automatically extracted from 3D acquisition data. Our objects of study are two Neolithic stone stelae and a faithful replica that was created in the course of an archaeological study. We use common statistical methods and investigate the populations of depth and diameter of the engraving traces, as well as their correlation. We observe that the erosion of the t…
A Constrained Band Selection Method Based on Information Measures for Spectral Image Color Visualization
International audience; We present a new method for the visualization of spectral images, based on a selection of three relevant spectral channels to build a Red-Green-Blue composite. Band selection is achieved by means of information measures at the first, second and third orders. Irrelevant channels are preliminarily removed by means of a center-surround entropy comparison. A visualization-oriented spectrum segmentation based on the use of color matching functions allows for computational ease and adjustment of the natural rendering. Results from the proposed method are presented and objectively compared to four other dimensionality reduction techniques in terms of naturalness and informa…
Representation and estimation of spectral reflectances using projection on PCA and wavelet bases
In this article, we deal with the problem of spectral reflectance function representation and estimation in the context of multispectral imaging. Because the reconstruction of such functions is an inverse problem, slight variations in input data completely skew the expected results. Therefore, stabilizing the reconstruction process is necessary. To do this, we propose to use wavelets as basis functions, and we compare those with Fourier and PCA bases. We present the idea and compare these three methods, which belong to the class of linear models. The PCA method is training-set dependent and confirms its robustness when applied to reflectance estimation of the training sets. Fourier and wave…
High-end colorimetric display characterization using an adaptive training set
A new, accurate, and technology-independent display color-characterization model is introduced. It is based on polyharmonic spline interpolation and on an optimized adaptive training data set. The establishment of this model is fully automatic and requires only a few minutes, making it efficient in a practical situation. The experimental results are very good for both the forward and inverse models. Typically, the proposed model yields an average model prediction error of about 1 ∆Eab* unit or below for several displays. The maximum error is shown to be low as well. freedom given to the model considering the choice of a tar- get color space and of the kernel and smoothing factor for the int…
Optical calibration of a multispectral imaging system based on interference filters
We present a new approach to optically calibrate a multispectral imaging system based on interference filters. Such a system typically suffers from some blurring of its channel images. Because the effectiveness of spectrum reconstruction depends heavily on the quality of the acquired channel images, and because this blurring negatively affects them, a method for deblurring and denoising them is required. The blur is modeled as a uniform intensity distribution within a circular disk. It allows us to characterize, quantitatively, the degradation for each channel image. In terms of global reduction of the blur, it consists of the choice of the best channel for the focus adjustment according to…
An Efficient Method for the Visualization of Spectral Images Based on a Perception-Oriented Spectrum Segmentation
We propose a new method for the visualization of spectral images. It involves a perception-based spectrum segmentation using an adaptable thresholding of the stretched CIE standard observer colormatching functions. This allows for an underlying removal of irrelevant channels, and, consequently, an alleviation of the computational burden of further processings. Principal Components Analysis is then used in each of the three segments to extract the Red, Green and Blue primaries for final visualization. A comparison framework using two different datasets shows the efficiency of the proposed method.
On the appearance of objects and materials: Qualitative analysis of experimental observations
Perception of appearance of different materials and objects is a complex psychophysical phenomenon and its neurophysiological and behavioral mechanisms are far from being fully understood. The various appearance attributes are usually studied separately. In addition, no comprehensive and functional total appearance modelling has been done up-to date. We have conducted experiments using physical objects asking observers to describe the objects and carry out visual tasks. The process has been videotaped and analysed qualitatively using the Grounded Theory Analysis, a qualitative research methodology from social science. In this work, we construct a qualitative model of this data and compare i…
Discrete wavelet transform based multispectral filter array demosaicking
International audience; The idea of colour filter array may be adapted to multi-spectral image acquisition by integrating more filter types into the array, and developing associated demosaicking algorithms. Several methods employing discrete wavelet transform (DWT) have been proposed for CFA demosaicking. In this work, we put forward an extended use of DWT for mul-tispectral filter array demosaicking. The extension seemed straightforward, however we observed striking results. This work contributes to better understanding of the issue by demonstrating that spectral correlation and spatial resolution of the images exerts a crucial influence on the performance of DWT based demosaicking.
Saliency in spectral images
International audience; Even though the study of saliency for color images has been thoroughly investigated in the past, very little attention has been given to datasets that cannot be displayed on traditional computer screens such as spectral images. Nevertheless, more than a means to predict human gaze, the study of saliency primarily allows for measuring infor- mative content. Thus, we propose a novel approach for the computation of saliency maps for spectral images. Based on the Itti model, it in- volves the extraction of both spatial and spectral features, suitable for high dimensionality images. As an application, we present a comparison framework to evaluate how dimensionality reduct…
A class-separability-based method for multi/hyperspectral image color visualization
In this paper, a new color visualization technique for multi- and hyperspectral images is proposed. This method is based on a maximization of the perceptual distance between the scene endmembers as well as natural constancy of the resulting images. The stretched CMF principle is used to transform reflectance into values in the CIE L*a*b* colorspace combined with an a priori known segmentation map for separability enhancement between classes. Boundaries are set in the a*b* subspace to balance the natural palette of colors in order to ease interpretation by a human expert. Convincing results on two different images are shown.
A sensor-data-based denoising framework for hyperspectral images
Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term…
A Study on the Impact of Spectral Characteristics of Filters on Multispectral Image Acquisition
International audience; In every aspect, filter design plays an important role in an image acquisition system based on a single image sensor and a colour filter array (CFA) mounted onto the sensor. Complementary CFAs are used by some colour cameras in the interest of higher sensitivity, which motivated us to employ filters of wide pass bands in the effort to adapt CFA for multispectral image acquisition. In this context, filter design has an effect on the accuracy of spectrum reconstruction in addition to other aspects. The results show that wider bandwidths in general result in more faithful spectrum reconstruction and higher signal-to-noise performance.
Hyperspectral Texture Metrology Based on Joint Probability of Spectral and Spatial Distribution
International audience; Texture characterization from the metrological point of view is addressed in order to establish a physically relevant and directly interpretable feature. In this regard, a generic formulation is proposed to simultaneously capture the spectral and spatial complexity in hyperspectral images. The feature, named relative spectral difference occurrence matrix (RSDOM) is thus constructed in a multireference, multidirectional, and multiscale context. As validation, its performance is assessed in three versatile tasks. In texture classification on HyTexiLa, content-based image retrieval (CBIR) on ICONES-HSI, and land cover classification on Salinas, RSDOM registers 98.5% acc…
A geometrical approach for inverting display color-characterization models
— Some display color-characterization models are not easily inverted. This work proposes ways to build geometrical inverse models given any forward color-characterization model. The main contribution is to propose and analyze several methods to optimize the 3-D geometrical structure of an inverse color-characterization model directly based on the forward model. Both the amount of data and their distribution in color space is especially focused on. Several optimization criteria, related either to an evaluation data set or to the geometrical structure itself, are considered. A practical case with several display devices, combining the different methods proposed in the article, are considered …
Extraction and fusion of spectral parameters for face recognition
This is the copy of journal's version originally published in Proc. SPIE 7877: http://spie.org/x10.xml?WT.svl=tn7. Reprinted with permission of SPIE. Many methods have been developed in image processing for face recognition, especially in recent years with the increase of biometric technologies. However, most of these techniques are used on grayscale images acquired in the visible range of the electromagnetic spectrum. The aims of our study are to improve existing tools and to develop new methods for face recognition. The techniques used take advantage of the different spectral ranges, the visible, optical infrared and thermal infrared, by either combining them or analyzing them separately …
An adaptive-PCA algorithm for reflectance estimation from color images
This paper deals with the problem of spectral reflectance estimation from color camera outputs. Because the reconstruction of such functions is an inverse problem, stabilizing the reconstruction process is highly desirable. One way to do this is to decompose reflectance function on a basis functions like PCA. The present work proposes an algorithm making PCA adaptive in reflectance estimation from a color camera output. We propose to adapt the PCA basis derivation by selecting, for each sample, the more relevant elements from the training set elements. The adaptivity criterion is achieved by a likelihood measurement. Finally, the spectral reflectance estimation results are evaluated with th…