6533b858fe1ef96bd12b6dfe
RESEARCH PRODUCT
A sensor-data-based denoising framework for hyperspectral images
Marius PedersenFerdinand DegerAlamin MansouriJon Yngve HardebergYvon Voisinsubject
Blind deconvolution[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingHyperspectral imagingAnisotropic diffusionComputer scienceNoise reductionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processing02 engineering and technology01 natural sciences010309 opticsOptics[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing0103 physical sciencesdenoising0202 electrical engineering electronic engineering information engineeringbusiness.industryHyperspectral imagingcomputer.file_formatNon-local meansAtomic and Molecular Physics and OpticsLight intensityFull spectral imagingComputer Science::Computer Vision and Pattern Recognition020201 artificial intelligence & image processingImage file formatsNoise (video)businesscomputerdescription
Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account. A sensor-data-based denoising framework for hyperspectral images Open Access
year | journal | country | edition | language |
---|---|---|---|---|
2015-09-05 |