6533b821fe1ef96bd127b805

RESEARCH PRODUCT

Shrinkage Bubbles: The C–O–H–S Magmatic Fluid System at San Cristóbal Volcano

Alessandro AiuppaAlessandro AiuppaMaria Luce FrezzottiE. H. HauriPhilippe Robidoux

subject

CO2 H2O SO2 mgmatic degassing melt inclusionsgeographyGEO/07 - PETROLOGIA E PETROGRAFIAMelt inclusiongeography.geographical_feature_category010504 meteorology & atmospheric sciencesSan CristóbalFluid system010502 geochemistry & geophysics01 natural sciencesGeophysicsVolcanoGeochemistry and PetrologyGEO/08 - GEOCHIMICA E VULCANOLOGIARaman spectroscopyShrinkage bubblePetrologyGeophysicCopperGeology0105 earth and related environmental sciencesShrinkage

description

New analytical results for the composition of shrinkage bubbles (09-70 vol. %) in olivine-hosted (Fo <80%) primary melt inclusions (MIs) have been incorporated into a novel geochemical model for San Cristó bal volcano, Nicaragua. The vapour, liquid, and mineral components found inside shrinkage bubbles may represent relics of early C-O-H-S fluids exsolved from a magmatichydrothermal system. This conclusion is supported by high-resolution Raman microspectroscopy revealing: (1) gaseous CO2 (d=0·17-0·31 g/cm3 in 31 samples) coexisting with liquid H2O (in seven samples) at ambient temperature (<22°C) inside the shrinkage bubbles of naturally quenched inclusions; (2) several mineral phases (i.e. Fe, Cu-sulfides, Ca-sulfates and Mg-carbonates) formed along the bubble-glass interface, as confirmed by electron backscattered/energy-dispersive spectroscopy. The presence of liquid water was revealed by applying a novel subtraction method to fitted Raman spectra that isolated an isosbestic liquid-water band at 3460±60/cm-1 (mean±SD). In MIs, the major oxide composition of glasses containing shrinkage bubbles were analysed by electron microprobe, whereas glass volatile contents were measured with nanoscale secondary-ion mass spectroscopy. According to the water content of the glass inclusions (≤ 3·3wt %) and the presence of liquid water at the bubble-glass interface, only small amounts of water (0·3wt %) appear to have migrated inside the bubbles. From pre-eruptive (up to 1200°C) to post-eruptive temperatures, aqueous fluids represent the principal agents for chemical reactions inside MI bubbles involving dissolved ionic species (e.g. SO42-, CO32-, and Cl- ) and major and/or trace elements from the inclusion glass (e.g. Mg, Fe, Cu, Si, Al, Na, and K). After the initiation of nucleation (1009-1141°C), the volume of shrinkage bubbles expands and the surrounding glass contracts (at <530°C). The Fe-Mg-Cu-rich (vapour) shrinkage-bubble paragenetic mineral sequence formed during different cooling stages: (A) high-temperature sulfide precipitation at 500-700°C; (B) lowtemperature magnesite precipitation at hydrothermal conditions <350°C; and finally (C) low-toambient temperature precipitation of carbonates and sulfates in liquid water at <150°C. Our findings indicate that the C-O-H-S fluids in shrinkage bubbles can represent an ideal preserved/ closed magmatic-hydrothermal system evolving after the exsolution of magmatic fluids during cooling.

https://doi.org/10.1093/petrology/egy092