6533b821fe1ef96bd127b9d7
RESEARCH PRODUCT
Co-variation between the intensity of behavioural manipulation and parasite development time in an acanthocephalan-amphipod system.
Stéphane CornetAlexandre BauerThierry RigaudSébastien MotreuilNathalie FranceschiLoïc Bollachesubject
0106 biological sciencesMale[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyPopulationZoology010603 evolutionary biology01 natural sciencesAcanthocephalaHost-Parasite Interactions03 medical and health sciencesGenetic variation[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisPhototaxishost–parasite associationParasite hostingAnimalsparasite development timeAmphipoda[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyeducationEcology Evolution Behavior and Systematics030304 developmental biologyTrophic level[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology0303 health scienceseducation.field_of_studybiologyBehavior AnimalEcologyIntermediate hostGenetic Variationbiology.organism_classificationGammarus pulextrade-offsphototaxisPomphorhynchus laevisFemale[SDE.BE]Environmental Sciences/Biodiversity and Ecology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosisdescription
8 pages; International audience; Pomphorhynchus laevis, a fish acanthocephalan parasite, manipulates the behaviour of its gammarid intermediate host to increase its trophic transmission to the definitive host. However, the intensity of behavioural manipulation is variable between individual gammarids and between parasite populations. To elucidate causes of this variability, we compared the level of phototaxis alteration induced by different parasite sibships from one population, using experimental infections of Gammarus pulex by P. laevis. We used a naive gammarid population, and we carried out our experiments in two steps, during spring and winter. Moreover, we also investigated co-variation between phototaxis (at different stages of infection, 'young' and 'old cystacanth stage') and two other fitness-related traits, infectivity and development time. Three main parameters could explain the parasite intra-population variation in behavioural manipulation. The genetic variation, suggested by the differences between parasite families, was lower than the variation owing to an (unidentified) environmental factor. Moreover, a correlation was found between development rate and the intensity of behavioural change, the fastest growing parasites being unable to induce rapid phototaxis reversal. This suggests that parasites cannot optimize at the same time these two important parameters of their fitness, and this could explain a part of the variation observed in the wild.
year | journal | country | edition | language |
---|---|---|---|---|
2010-10-01 |