6533b823fe1ef96bd127ebfb

RESEARCH PRODUCT

Naphthalene Derivatives from the Roots of Pentas parvifolia and Pentas bussei

Göran LandbergPaul A. FitzpatrickFangfang PanNegera AbdissaNegera AbdissaNegera AbdissaJürgen GräfensteinKari RissanenMáté ErdélyiAmra GruhonjicAbiy Yenesew

subject

StereochemistryPlasmodium falciparumPharmaceutical SciencePentasAnthraquinonesRubiaceaeCrystallography X-Ray010402 general chemistryPlant Roots01 natural sciencesAnalytical ChemistryAntimalarialsInhibitory Concentration 50chemistry.chemical_compoundBreast cancer cell lineDrug DiscoveryAnthraquinonesIc50 valuesHumansNuclear Magnetic Resonance Biomolecularta116naphthalene derivativesNaphthalenenaphthalenesPharmacologyPentasMolecular Structurebiology010405 organic chemistryOrganic Chemistryta1182Pentas parvifoliabiology.organism_classificationphytochemicals0104 chemical sciencesComplementary and alternative medicinechemistryPhytochemicalMolecular Medicine

description

The phytochemical investigation of the CH2Cl2/MeOH (1:1) extract of the roots of Pentas parvifolia led to the isolation of three new naphthalenes, parvinaphthols A (1), B (2), and C (3), two known anthraquinones, and five known naphthalene derivatives. Similar investigation of the roots of Pentas bussei afforded a new polycyclic naphthalene, busseihydroquinone E (4), a new 2,2'-binaphthralenyl-1,1'-dione, busseihydroquinone F (5), and five known naphthalenes. All purified metabolites were characterized by NMR and MS data analyses, whereas the absolute configurations of 3 and 4 were determined by single-crystal X-ray diffraction studies. The E-geometry of compound 5 was supported by DFT-based chemical shift calculations. Compounds 2-4 showed marginal cytotoxicity against the MDA-MB-231 human triple-negative breast cancer cell line with IC50 values ranging from 62.3 to 129.6 μM.

10.1021/acs.jnatprod.6b00178https://doi.org/10.1021/acs.jnatprod.6b00178