6533b823fe1ef96bd127f557
RESEARCH PRODUCT
Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus
Anamarija ButkovićRubén GonzálezSantiago F. ElenaSantiago F. Elenasubject
0106 biological sciencesinfection matrixPopulationPotyvirusVirulenceMetapopulation010603 evolutionary biology01 natural sciencesMicrobiology03 medical and health sciencesVirologyPlant virusTurnip mosaic virusResistance to infectionexperimental evolutioneducationPathogenhost population structure030304 developmental biologyvirus evolution0303 health sciencesExperimental evolutioneducation.field_of_studyGenetic diversitybiologyEcotypeGenetic heterogeneityEvolution of virulenceHost population structureresistance to infectionbiology.organism_classificationInfection matrixVirus evolutionExperimental evolutionInfectious disease (medical specialty)Evolutionary biologyViral evolutionResearch Articleevolution of virulencedescription
Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV lineages in two radically different host population structures: (1) a metapopulation subdivided into six demes (subpopulations); each one being composed of individuals from only one of six possible A. thaliana ecotypes and (2) a well-mixed population constituted by equal number of plants from the same six A. thaliana ecotypes. These two populations were evolved for twelve serial passages. At the end of the experimental evolution, we found faster adaptation of TuMV to each ecotype in the metapopulation than in the well-mixed heterogeneous host populations. However, viruses evolved in well-mixed populations were more pathogenic and infectious than viruses evolved in the metapopulation. Furthermore, the viruses evolved in the demes showed stronger signatures of local specialization than viruses evolved in the well-mixed populations. These results illustrate how the genetic diversity of hosts in an experimental ecosystem favors the evolution of virulence of a pathogen.
year | journal | country | edition | language |
---|---|---|---|---|
2019-07-01 |