0000000000014133

AUTHOR

Anamarija Butković

0000-0002-1435-0912

A genome-wide association study identifies Arabidopsis thaliana genes that contribute to differences in the outcome of infection with two Turnip mosaic potyvirus strains that differ in their evolutionary history and degree of host specialization

Viruses lie in a continuum between generalism and specialism depending on their ability to infect more or less hosts. While generalists are able to successfully infect a wide variety of hosts, specialists are limited to one or a few. Even though generalists seem to gain an advantage due to their wide host range, they usually pay a pleiotropic fitness cost within each host. On the contrary, a specialist has maximal fitness within its own host. A relevant yet poorly explored question is whether viruses differ in the way they interact with their hosts’ gene expression depending on their degree of specialization. Using a genome-wide association study approach, we have identified host genes whos…

research product

Arabidopsis thalianagenes contributing to differences in the outcome of infection with generalist and specialist strains ofTurnip mosaic virusidentified by genome-wide association studies

AbstractPathogens can be classified as generalists or specialists depending on their host breadth. While generalists are able to successfully infect a wide variety of host species, the host range of specialists is limited to a few related species. Even though generalists seem to gain an advantage due to their wide host range, they usually pay a cost in terms of fitness within each host species (i.e., the jack-of-all trades, master of none). On the contrary, specialists have high fitness within their own host. A highly relevant yet poorly explored question is whether generalist and specialist viruses differ in the way they interact with their host’s gene expression networks. To identify host…

research product

Engineered Functional Redundancy Relaxes Selective Constraints upon Endogenous Genes in Viral RNA Genomes

Functional redundancy, understood as the functional overlap of different genes, is a double-edge sword. At the one side, it is thought to serve as a robustness mechanism that buffers the deleterious effect of mutations hitting one of the redundant copies, thus resulting in pseudogenization. At the other side, it is considered as a source of genetic and functional innovation. In any case, genetically redundant genes are expected to show an acceleration in the rate of molecular evolution. Here, we tackle the role of functional redundancy in viral RNA genomes. To this end, we have evaluated the rates of compensatory evolution for deleterious mutations affecting an essential function, the suppr…

research product

Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus

Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV …

research product

From foes to friends: Viral infections expand the limits of host phenotypic plasticity

Phenotypic plasticity enables organisms to survive in the face of unpredictable environmental stress. Intimately related to the notion of phenotypic plasticity is the concept of the reaction norm that places phenotypic plasticity in the context of a genotype-specific response to environmental gradients. Whether reaction norms themselves evolve and which factors might affect their shape has been the object of intense debates among evolutionary biologists along the years. Since their discovery, viruses have been considered as pathogens. However, new viromic techniques and a shift in conceptual paradigms are showing that viruses are mostly non-pathogenic ubiquitous entities. Recent studies hav…

research product

Defects in plant immunity modulate the rates and patterns of RNA virus evolution

AbstractIt is assumed that host genetic variability for susceptibility to infection necessarily conditions virus evolution. Differences in host susceptibility can either drive the virus to diversify into strains that track different defense alleles (e.g., antigenic diversity) or to infect only the most susceptible genotypes. To clarify these processes and their effect on virulence, we have studied how variability in host defense responses determine the evolutionary fate of viruses. To accomplish this, we performed evolution experiments with Turnip mosaic potyvirus in Arabidopsis thaliana mutants. Mutant plants had disruptions in infection-response signaling pathways or in genes whose produc…

research product

Adaptation of turnip mosaic potyvirus to a specific niche reduces its genetic and environmental robustness

Robustness is the preservation of the phenotype in the face of genetic and environmental perturbations. It has been argued that robustness must be an essential fitness component of RNA viruses owed to their small and compacted genomes, high mutation rates and living in ever-changing environmental conditions. Given that genetic robustness might hamper possible beneficial mutations, it has been suggested that genetic robustness can only evolve as a side-effect of the evolution of robustness mechanisms specific to cope with environmental perturbations, a theory known as plastogenetic congruence. However, empirical evidences from different viral systems are contradictory. To test how adaptation…

research product

Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism

Environmental conditions are an important factor driving pathogens’ evolution. Here, we explore the effects of drought stress in plant virus evolution. We evolved turnip mosaic potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher drought tolerance to infected plants. By contrast, nonsignificant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in to…

research product