6533b824fe1ef96bd127ff78

RESEARCH PRODUCT

A novel approach to β-decay: PANDORA, a new experimental setup for future in-plasma measurements

David MascaliDomenico SantonocitoSimone AmaducciLucio AndòVincenzo AntonuccioSándor BiriAlfio BonannoVincenza Piera BonannoStefan BriefiMaurizio BussoLuigi CelonaLuigi CosentinoSergio CristalloMarco CuffianiCostantino De AngelisGiacomo De AngelisDavide De SalvadorLoreto Di DonatoJean-eric DucretAref Eshkevar VakiliUrsel FantzAlessio GalatàCarmelo Sebastiano GalloSanto GamminoTommaso IserniaHannu KoivistoKarl-ludwig KratzRisto KronholmMarco La CognataSilvia LeoniAndrea LocatelliMario MaggioreFabio MaimoneLuciana MalferrariGiorgio ManciniLaurent MaunouryGiorgio Sebastiano MauroMaria MazzagliaAlberto MengoniAndrea MiragliaBharat MishraMario MusumeciDaniel Ricardo NapoliEugenia NaselliFabrizio OdoriciLibero PalladinoGiuseppe PalmisanoSanti PavoneSalvatore PennisiAlbino PeregoAngelo PidatellaRichard RáczRiccardo ReitanoDanilo RifuggiatoMatteo RinaldiAntonio Domenico RussoFilippo RussoGaetano SchillaciStefano SelleriStefano SimonucciGino SorbelloRoberta SpartàSimone TaioliKlaus TinschertGiuseppe TorrisiAntonio TrifiròSedina TsikataAurora TuminoDiego VescoviLuca Vincetti

subject

plasma diagnosticsastrofysiikkaPlasma trapGeneral Physics and AstronomynucleosynthesisBeta decayplasmatekniikkaplasmafysiikkaPlasma diagnosticsilmaisimetbeta decay; nucleosynthesis; plasma trap; plasma diagnosticsbeta decay[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ydinfysiikkaBeta decay; Nucleosynthesis; Plasma diagnostics; Plasma trapNucleosynthesisplasma trap

description

International audience; Theoretical predictions as well as experiments performed at storage rings have shown that the lifetimes of β-radionuclides can change significantly as a function of the ionization state. In this paper we describe an innovative approach, based on the use of a compact plasma trap to emulate selected stellar-like conditions. It has been proposed within the PANDORA project (Plasmas for Astrophysics, Nuclear Decay Observation and Radiation for Archaeometry) with the aim to measure, for the first time in plasma, nuclear β-decay rates of radionuclides involved in nuclear-astrophysics processes. To achieve this task, a compact magnetic plasma trap has been designed to reach the needed plasma densities, temperatures, and charge-states distributions. A multi-diagnostic setup will monitor, on-line, the plasma parameters, which will be correlated with the decay rate of the radionuclides. The latter will be measured through the detection of the γ-rays emitted by the excited daughter nuclei following the β-decay. An array of 14 HPGe detectors placed around the trap will be used to detect the emitted γ-rays. For the first experimental campaign three isotopes, 176Lu, 134Cs, and 94Nb, were selected as possible physics cases. The newly designed plasma trap will also represent a tool of choice to measure the plasma opacities in a broad spectrum of plasma conditions, experimentally poorly known but that have a great impact on the energy transport and spectroscopic observations of many astrophysical objects. Status and perspectives of the project will be highlighted in the paper.

10.3390/universe8020080https://hdl.handle.net/21.11116/0000-0009-EF42-021.11116/0000-0009-EF44-E