0000000000367328
AUTHOR
Santo Gammino
Effect of electron cyclotron resonance ion source frequency tuning on ion beam intensity and quality at Department of Physics, University of Jyväskylä.
Ion beam intensity and quality have a crucial effect on the operation efficiency of the accelerator facilities. This paper presents the investigations on the ion beam intensity and quality after the mass separation performed with the Department of Physics, University of Jyvaskyla 14 GHz electron cyclotron resonance ion source by sweeping the microwave in the 14.05–14.13 GHz range. In many cases a clear variation in the ion beam intensity and quality as a function of the frequency was observed. The effect of frequency tuning increased with the charge state. In addition, clear changes in the beam structure seen with the beam viewer were observed. The results confirmed that frequency tuning ca…
A novel approach to β-decay: PANDORA, a new experimental setup for future in-plasma measurements
International audience; Theoretical predictions as well as experiments performed at storage rings have shown that the lifetimes of β-radionuclides can change significantly as a function of the ionization state. In this paper we describe an innovative approach, based on the use of a compact plasma trap to emulate selected stellar-like conditions. It has been proposed within the PANDORA project (Plasmas for Astrophysics, Nuclear Decay Observation and Radiation for Archaeometry) with the aim to measure, for the first time in plasma, nuclear β-decay rates of radionuclides involved in nuclear-astrophysics processes. To achieve this task, a compact magnetic plasma trap has been designed…
A status report of the multipurpose superconducting electron cyclotron resonance ion source
Intense heavy ion beam production with electron cyclotron resonance (ECR) ion sources is a common requirement for many of the accelerators under construction in Europe and elsewhere. An average increase of about one order of magnitude per decade in the performance of ECR ion sources was obtained up to now since the time of pioneering experiment of R. Geller at CEA, Grenoble, and this trend is not deemed to get the saturation at least in the next decade, according to the increased availability of powerful magnets and microwave generators. Electron density above 1013 cm(-3) and very high current of multiply charged ions are expected with the use of 28 GHz microwave heating and of an adequate …