6533b824fe1ef96bd1280182
RESEARCH PRODUCT
Centrality measures for networks with community structure
Naveen GuptaAnurag SinghHocine Cherifisubject
FOS: Computer and information sciencesStatistics and ProbabilityPhysics - Physics and SocietyExploitComplex networksFOS: Physical sciencesNetwork sciencePhysics and Society (physics.soc-ph)Network theoryMachine learningcomputer.software_genreNetwork topologyImmunization strategies01 natural sciences010305 fluids & plasmas0103 physical sciences010306 general physicsMathematicsSocial and Information Networks (cs.SI)Structure (mathematical logic)[PHYS.PHYS]Physics [physics]/Physics [physics]business.industryCommunity structureComputer Science - Social and Information NetworksComplex networkEpidemic dynamicsCondensed Matter Physics[ PHYS.PHYS ] Physics [physics]/Physics [physics]Community structureArtificial intelligenceData miningbusinessCentralitycomputerdescription
Understanding the network structure, and finding out the influential nodes is a challenging issue in the large networks. Identifying the most influential nodes in the network can be useful in many applications like immunization of nodes in case of epidemic spreading, during intentional attacks on complex networks. A lot of research is done to devise centrality measures which could efficiently identify the most influential nodes in the network. There are two major approaches to the problem: On one hand, deterministic strategies that exploit knowledge about the overall network topology in order to find the influential nodes, while on the other end, random strategies are completely agnostic about the network structure. Centrality measures that can deal with a limited knowledge of the network structure are required. Indeed, in practice, information about the global structure of the overall network is rarely available or hard to acquire. Even if available, the structure of the network might be too large that it is too much computationally expensive to calculate global centrality measures. To that end, a centrality measure is proposed that requires information only at the community level to identify the influential nodes in the network. Indeed, most of the real-world networks exhibit a community structure that can be exploited efficiently to discover the influential nodes. We performed a comparative evaluation of prominent global deterministic strategies together with stochastic strategies with an available and the proposed deterministic community-based strategy. Effectiveness of the proposed method is evaluated by performing experiments on synthetic and real-world networks with community structure in the case of immunization of nodes for epidemic control.
year | journal | country | edition | language |
---|---|---|---|---|
2016-06-15 |