6533b824fe1ef96bd1281677

RESEARCH PRODUCT

Effect of C/N shock variation on the performances of a moving bed membrane bioreactor.

Gaspare VivianiGaetano Di BellaMichele TorregrossaDaniele Di TrapaniGiorgio Mannina

subject

Moving bed membrane bioreactorEnvironmental EngineeringBiofoulingNitrogenOLRBioengineeringPilot ProjectsC/N ratio; Moving bed membrane bioreactor; Nitrification; OLR; Bioengineering; Environmental Engineering; Waste Management and DisposalMembrane bioreactorWaste Disposal FluidAmmoniachemistry.chemical_compoundExtracellular polymeric substanceBiopolymersBioreactorsAmmoniaBioreactorBiomassWaste Management and DisposalBiological Oxygen Demand AnalysisChromatographyFoulingBacteriaRenewable Energy Sustainability and the EnvironmentChemistryMembranes ArtificialGeneral MedicineC/N ratioNitrificationCarbonMembraneChemical engineeringBiofilmsNitrificationOxidation-ReductionParticle deposition

description

Abstract The effect of a sharp variation of C/N ratio in a moving bed membrane bioreactor (MB-MBR) pilot plant treating high strength wastewater has been investigated. The experimental campaign was divided into two periods, each characterized by a different C/N ratio (namely, 2.5 and 15, Period 1 and Period 2, respectively). The MB-MBR system was analyzed in terms of organic carbon removal, nitrification efficiency, biokinetic activity and fouling behavior. The results showed that the nitrification process was severely affected by lower C/N value and by high concentration of ammonia. It was noticed an extensive stress effect on the autotrophic bacteria. Furthermore, it was observed an increase of the resistance related to particle deposition into membrane pores, likely due to a worsening of the cake layer features, with a reduction of the “pre-filter” effect, also related to the increase of the total Extracellular Polymeric Substances production with the C/N ratio.

10.1016/j.biortech.2015.03.143https://pubmed.ncbi.nlm.nih.gov/25898086