6533b825fe1ef96bd128327b
RESEARCH PRODUCT
Silicon dosimeters based on Floating Gate Sensor: design, implementation and characterization
E. PikhayCristiano CalligaroElio Angelo TomarchioAldo ParlatoUmberto GattiY. Roizinsubject
010302 applied physicsSignal processingMaterials scienceDosimeterSettore ING-IND/20 - Misure E Strumentazione Nucleari010308 nuclear & particles physicsbusiness.industryAnalog-to-digital converterHardware_PERFORMANCEANDRELIABILITYFlash ADC01 natural sciencesPower (physics)law.inventionCMOSlawAnalog-to-Digital converter current-to-voltage interfaces Dosimeter edgeless transistors (ELT) Floating Gate MOS radiation hardening by design (RHBD) total ionizing dose (TID)Absorbed dose0103 physical sciencesHardware_INTEGRATEDCIRCUITSCalibrationOptoelectronicsbusinessdescription
A rad-hard monolithic dosimeter has been implemented and characterized in a standard 180 nm CMOS technology. The radiation sensor (C-sensor) is based on a Floating Gate (FG) MOS discharge principle. The output current is processed by a current-to-voltage (I/V) interface and then converted by a 5-bit flash ADC. The dosimeter is re-usable (FG can be recharged) and can detect a dose up to 1krad (Si) with a resolution of 30rad (Si) typical over temperature 0 to 85°C range. The ADC allows easy further signal processing for calibration and averaging, etc. The power consumption of C-sensor plus I/V interface is < 2mW from a 5 V power supply. The overall layout area is less than 0.25mm2. The Radiation-Hardened-By-Design (RHBD) approach guarantees that the absorbed dose does not degrade the circuitry.
year | journal | country | edition | language |
---|---|---|---|---|
2020-06-01 | 2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON) |