6533b826fe1ef96bd1283cce

RESEARCH PRODUCT

Induction of Mitochondrial Changes Associated with Oxidative Stress on Very Long Chain Fatty Acids (C22:0, C24:0, or C26:0)-Treated Human Neuronal Cells (SK-NB-E)

Mustapha Cherkaoui-malkiAmira ZarroukAmira ZarroukAnne VejuxJean-marc RiedingerThomas NuryHammam I. El HajjMadouda HaddadGérard LizardMohamed Hammami

subject

AgingArticle SubjectMitochondrionBiologymedicine.disease_causeBiochemistryMitochondrial apoptosis-induced channelchemistry.chemical_compoundSuperoxidesCell Line TumormedicineHumanslcsh:QH573-671Cell ShapeCell ProliferationMembrane Potential MitochondrialNeuronslcsh:CytologySuperoxideFatty AcidsNeurodegenerationCell BiologyGeneral MedicinePeroxisomeFlow Cytometrymedicine.diseaseMolecular biologyMitochondriaCell biologyOxidative StressProtein SubunitsMicroscopy FluorescencechemistryMultiprotein ComplexesDNAJA3ATP–ADP translocaseOxidative stressResearch Article

description

In Alzheimer's disease, lipid alterations point towards peroxisomal dysfunctions. Indeed, a cortical accumulation of saturated very long chain fatty acids (VLCFAs: C22:0, C24:0, C26:0), substrates for peroxisomalβ-oxidation, has been found in Alzheimer patients. This study was realized to investigate the effects of VLCFAs at the mitochondrial level since mitochondrial dysfunctions play crucial roles in neurodegeneration. On human neuronal SK-NB-E cells treated with C22:0, C24:0, or C26:0 (0.1–20 μM; 48 h), an inhibition of cell growth and mitochondrial dysfunctions were observed by cell counting with trypan blue, MTT assay, and measurement of mitochondrial transmembrane potential (Δψm) with DiOC6(3). A stimulation of oxidative stress was observed with DHE and MitoSOX used to quantify superoxide anion production on whole cells and at the mitochondrial level, respectively. With C24:0 and C26:0, by Western blotting, lower levels of mitochondrial complexes III and IV were detected. After staining with MitoTracker and by transmission electron microscopy used to study mitochondrial topography, mass and morphology, major changes were detected in VLCFAs treated-cells: modification of the cytoplasmic distribution of mitochondria, presence of large mitochondria, enhancement of the mitochondrial mass. Thus, VLCFAs can be potential risk factors contributing to neurodegeneration by inducing neuronal damages via mitochondrial dysfunctions.

https://doi.org/10.1155/2012/623257