6533b826fe1ef96bd12848f8
RESEARCH PRODUCT
Joint Gaussian processes for inverse modeling
Manuel Campos-tabernerGustau Camps-vallsLuca MartinoDaniel Heestermans Svendsensubject
010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesNonparametric statisticsInverseInversion (meteorology)Statistical model02 engineering and technologyInverse problem01 natural sciencesData modelingNonlinear systemsymbols.namesakeAtmospheric radiative transfer codesRadiancesymbolsGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciencesdescription
Solving inverse problems is central in geosciences and remote sensing. Very often a mechanistic physical model of the system exists that solves the forward problem. Inverting the implied radiative transfer model (RTM) equations numerically implies, however, challenging and computationally demanding problems. Statistical models tackle the inverse problem and predict the biophysical parameter of interest from radiance data, exploiting either in situ data or simulated data from an RTM. We introduce a novel nonlinear and nonparametric statistical inversion model which incorporates both real observations and RTM-simulated data. The proposed Joint Gaussian Process (JGP) provides a solid framework for exploiting the regularities between the two types of data, in order to perform inverse modeling. Advantages of the JGP method over competing strategies are shown on both a simple toy example and in leaf area index (LAI) retrieval from Landsat data combined with simulated data generated by the PROSAIL model.
year | journal | country | edition | language |
---|---|---|---|---|
2017-07-01 |