0000000000158289

AUTHOR

Daniel Heestermans Svendsen

showing 13 related works from this author

Physics-Aware Machine Learning For Geosciences And Remote Sensing

2021

Machine learning models alone are excellent approximators, but very often do not respect the most elementary laws of physics, like mass or energy conservation, so consistency and confidence are compromised. In this paper we describe the main challenges ahead in the field, and introduce several ways to live in the Physics and machine learning interplay: encoding differential equations from data, constraining data-driven models with physics-priors and dependence constraints, improving parameterizations, emulating physical models, and blending data-driven and process-based models. This is a collective long-term AI agenda towards developing and applying algorithms capable of discovering knowled…

Physics010504 meteorology & atmospheric sciencesMathematical modelbusiness.industry0211 other engineering and technologies02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesField (computer science)Data modelingEnergy conservationEarth system scienceConsistency (database systems)Encoding (memory)Artificial intelligencebusinesscomputerGeology021101 geological & geomatics engineering0105 earth and related environmental sciencesPhysical lawIGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium 2021
researchProduct

Statistical biophysical parameter retrieval and emulation with Gaussian processes

2019

Abstract Earth observation from satellites poses challenging problems where machine learning is being widely adopted as a key player. Perhaps the most challenging scenario that we are facing nowadays is to provide accurate estimates of particular variables of interest characterizing the Earth's surface. This chapter introduces some recent advances in statistical bio-geophysical parameter retrieval from satellite data. In particular, we will focus on Gaussian process regression (GPR) that has excelled in parameter estimation as well as in modeling complex radiative transfer processes. GPR is based on solid Bayesian statistics and generally yields efficient and accurate parameter estimates, a…

Earth observationEmulationComputer scienceEstimation theorycomputer.software_genreField (computer science)Bayesian statisticssymbols.namesakeKrigingsymbolsData miningcomputerGaussian processInterpolation
researchProduct

Physics-Aware Gaussian Processes for Earth Observation

2017

Earth observation from satellite sensory data pose challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression and other kernel methods have excelled in biophysical parameter estimation tasks from space. GP regression is based on solid Bayesian statistics, and generally yield efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations is available though. In this work, we review three GP models that respect and learn the physics of the underlying processes …

MatemáticasEstimation theory0211 other engineering and technologiesContext (language use)02 engineering and technologyMissing dataBayesian statisticssymbols.namesakeKernel method0202 electrical engineering electronic engineering information engineeringsymbolsGeología020201 artificial intelligence & image processingGaussian process emulatorGaussian processAlgorithm021101 geological & geomatics engineeringInterpolation
researchProduct

Joint Gaussian processes for inverse modeling

2017

Solving inverse problems is central in geosciences and remote sensing. Very often a mechanistic physical model of the system exists that solves the forward problem. Inverting the implied radiative transfer model (RTM) equations numerically implies, however, challenging and computationally demanding problems. Statistical models tackle the inverse problem and predict the biophysical parameter of interest from radiance data, exploiting either in situ data or simulated data from an RTM. We introduce a novel nonlinear and nonparametric statistical inversion model which incorporates both real observations and RTM-simulated data. The proposed Joint Gaussian Process (JGP) provides a solid framework…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesNonparametric statisticsInverseInversion (meteorology)Statistical model02 engineering and technologyInverse problem01 natural sciencesData modelingNonlinear systemsymbols.namesakeAtmospheric radiative transfer codesRadiancesymbolsGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

Multioutput Automatic Emulator for Radiative Transfer Models

2018

This paper introduces a methodology to construct emulators of costly radiative transfer models (RTMs). The proposed methodology is sequential and adaptive, and it is based on the notion of acquisition functions in Bayesian optimization. Here, instead of optimizing the unknown underlying RTM function, one aims to achieve accurate approximations. The Automatic Multi-Output Gaussian Process Emulator (AMO-GAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the promising capabilities of the method for the const…

010504 meteorology & atmospheric sciencesComputer scienceFlatness (systems theory)Bayesian optimizationSampling (statistics)02 engineering and technologyFunction (mathematics)Atmospheric model01 natural sciencessymbols.namesakeSampling (signal processing)0202 electrical engineering electronic engineering information engineeringsymbolsRadiative transfer020201 artificial intelligence & image processingGaussian process emulatorGaussian processAlgorithm0105 earth and related environmental sciencesInterpolationIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Active emulation of computer codes with Gaussian processes – Application to remote sensing

2020

Many fields of science and engineering rely on running simulations with complex and computationally expensive models to understand the involved processes in the system of interest. Nevertheless, the high cost involved hamper reliable and exhaustive simulations. Very often such codes incorporate heuristics that ironically make them less tractable and transparent. This paper introduces an active learning methodology for adaptively constructing surrogate models, i.e. emulators, of such costly computer codes in a multi-output setting. The proposed technique is sequential and adaptive, and is based on the optimization of a suitable acquisition function. It aims to achieve accurate approximations…

FOS: Computer and information sciencesComputer Science - Machine LearningActive learningActive learning (machine learning)Computer sciencemedia_common.quotation_subjectMachine Learning (stat.ML)Radiative transfer model02 engineering and technology01 natural sciencesMachine Learning (cs.LG)symbols.namesakeArtificial IntelligenceStatistics - Machine Learning0103 physical sciences0202 electrical engineering electronic engineering information engineeringCode (cryptography)Emulation010306 general physicsFunction (engineering)Gaussian processGaussian process emulatorGaussian processRemote sensingmedia_commonEmulationbusiness.industrySampling (statistics)Remote sensingSignal ProcessingGlobal Positioning Systemsymbols020201 artificial intelligence & image processingComputer codeComputer Vision and Pattern RecognitionbusinessHeuristicsSoftwareDesign of experimentsPattern Recognition
researchProduct

Deep Gaussian processes for biogeophysical parameter retrieval and model inversion

2020

Parameter retrieval and model inversion are key problems in remote sensing and Earth observation. Currently, different approximations exist: a direct, yet costly, inversion of radiative transfer models (RTMs); the statistical inversion with in situ data that often results in problems with extrapolation outside the study area; and the most widely adopted hybrid modeling by which statistical models, mostly nonlinear and non-parametric machine learning algorithms, are applied to invert RTM simulations. We will focus on the latter. Among the different existing algorithms, in the last decade kernel based methods, and Gaussian Processes (GPs) in particular, have provided useful and informative so…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningEarth observation010504 meteorology & atmospheric sciencesIASIComputer science0211 other engineering and technologiesExtrapolation02 engineering and technologyDeep Gaussian Processes01 natural sciencesArticleMachine Learning (cs.LG)symbols.namesakeCopernicus programmeSentinelsMachine learningRadiative transferFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Signal ProcessingComputers in Earth SciencesModel inversionStatistical retrievalEngineering (miscellaneous)Gaussian processChlorophyll contentMoisture021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryInorganic suspended matterTemperatureInversion (meteorology)Statistical modelAtomic and Molecular Physics and OpticsComputer Science ApplicationsInfrared sounderNonlinear systemsymbolsGlobal Positioning SystemColoured dissolved matterbusinessAlgorithm
researchProduct

Deep Gaussian Processes for Geophysical Parameter Retrieval

2018

This paper introduces deep Gaussian processes (DGPs) for geophysical parameter retrieval. Unlike the standard full GP model, the DGP accounts for complicated (modular, hierarchical) processes, provides an efficient solution that scales well to large datasets, and improves prediction accuracy over standard full and sparse GP models. We give empirical evidence of performance for estimation of surface dew point temperature from infrared sounding data.

Surface (mathematics)Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesFOS: Physical sciences02 engineering and technologyAtmospheric model01 natural sciencesStatistics - ApplicationsMachine Learning (cs.LG)Physics - Geophysicssymbols.namesakeKernel (linear algebra)FOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Electrical Engineering and Systems Science - Signal ProcessingGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryGeophysics (physics.geo-ph)Depth soundingDew pointsymbolsGlobal Positioning SystembusinessAlgorithmIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Physics-aware Gaussian processes in remote sensing

2018

Abstract Earth observation from satellite sensory data poses challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression has excelled in biophysical parameter estimation tasks from airborne and satellite observations. GP regression is based on solid Bayesian statistics, and generally yields efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations between the state vector and the radiance observations is available though and could be useful to improve pre…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciences0211 other engineering and technologies02 engineering and technologyStatistics - Applications01 natural sciencessymbols.namesakeFOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Electrical Engineering and Systems Science - Signal ProcessingGaussian processGaussian process emulator021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryEstimation theoryBayesian optimizationState vectorMissing dataBayesian statisticssymbolsGlobal Positioning SystembusinessAlgorithmSoftwareApplied Soft Computing
researchProduct

Integrating Domain Knowledge in Data-Driven Earth Observation With Process Convolutions

2022

The modelling of Earth observation data is a challenging problem, typically approached by either purely mechanistic or purely data-driven methods. Mechanistic models encode the domain knowledge and physical rules governing the system. Such models, however, need the correct specification of all interactions between variables in the problem and the appropriate parameterization is a challenge in itself. On the other hand, machine learning approaches are flexible data-driven tools, able to approximate arbitrarily complex functions, but lack interpretability and struggle when data is scarce or in extrapolation regimes. In this paper, we argue that hybrid learning schemes that combine both approa…

FOS: Computer and information sciencesComputer Science - Machine LearningEarth observationAdvanced microwave scanning radiometer-2 (AMSR-2)moderate resolution imaging spectroradiometer (MODIS)Computer scienceleaf area index (LAI)0211 other engineering and technologiesExtrapolationMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreMachine Learning (cs.LG)Data-drivenConvolutionsymbols.namesakeadvanced scatterometer (ASCAT)Statistics - Machine Learningordinary differential equation (ODE)Electrical and Electronic EngineeringGaussian processsoil moisture and ocean salinity (SMOS)021101 geological & geomatics engineeringInterpretabilityForcing (recursion theory)machine learning (ML)soil moisture (SM)time series analysisgaussian process (GP)symbolsGeneral Earth and Planetary SciencesDomain knowledgeData mininggap fillingphysicscomputerfraction of absorbed photosynthetically active radiation (faPAR)IEEE Transactions on Geoscience and Remote Sensing
researchProduct

Adaptive Sequential Interpolator Using Active Learning for Efficient Emulation of Complex Systems

2020

Many fields of science and engineering require the use of complex and computationally expensive models to understand the involved processes in the system of interest. Nevertheless, due to the high cost involved, the required study becomes a cumbersome process. This paper introduces an interpolation procedure which belongs to the family of active learning algorithms, in order to construct cheap surrogate models of such costly complex systems. The proposed technique is sequential and adaptive, and is based on the optimization of a suitable acquisition function. We illustrate its efficiency in a toy example and for the construction of an emulator of an atmosphere modeling system.

Emulationexperimental designAtmosphere (unit)010504 meteorology & atmospheric sciencesComputer scienceProcess (engineering)Active learning (machine learning)media_common.quotation_subjectBayesian optimization0211 other engineering and technologiesComplex systemAdaptive interpolation02 engineering and technology01 natural sciencesComputer engineeringactive learningActive learningFunction (engineering)Bayesian optimization021101 geological & geomatics engineering0105 earth and related environmental sciencesmedia_commonInterpolationICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
researchProduct

Joint Gaussian Processes for Biophysical Parameter Retrieval

2017

Solving inverse problems is central to geosciences and remote sensing. Radiative transfer models (RTMs) represent mathematically the physical laws which govern the phenomena in remote sensing applications (forward models). The numerical inversion of the RTM equations is a challenging and computationally demanding problem, and for this reason, often the application of a nonlinear statistical regression is preferred. In general, regression models predict the biophysical parameter of interest from the corresponding received radiance. However, this approach does not employ the physical information encoded in the RTMs. An alternative strategy, which attempts to include the physical knowledge, co…

FOS: Computer and information sciencesHyperparameter010504 meteorology & atmospheric sciencesComputer scienceRemote sensing application0211 other engineering and technologiesMachine Learning (stat.ML)Regression analysis02 engineering and technologyInverse problem01 natural sciencesMachine Learning (cs.LG)Data modelingNonparametric regressionComputer Science - Learningsymbols.namesakeStatistics - Machine LearningRadiative transfersymbolsGeneral Earth and Planetary SciencesElectrical and Electronic EngineeringGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciencesIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Integrating Physics Modelling with Machine Learning for Remote Sensing

2020

L’observació de la Terra a partir de les dades proporcionades per sensors abord de satèl·lits, així com les proporcionades per models de transferència radiativa o climàtics, juntament amb les mesures in situ proporcionen una manera sense precedents de monitorar el nostre planeta amb millors resolucions espacials i temporals. La riquesa, quantitat i diversitat de les dades adquirides i posades a disposició també augmenta molt ràpidament. Aquestes dades ens permeten predir el rendiment dels cultius, fer un seguiment del canvi d’ús del sòl com ara la desforestació, supervisar i respondre als desastres naturals, i predir i mitigar el canvi climàtic. Per tal de fer front a tots aquests reptes, l…

:MATEMÁTICAS [UNESCO]remote sensingmachine learning:GEOGRAFÍA [UNESCO]:CIENCIAS TECNOLÓGICAS [UNESCO]gaussian processesUNESCO::CIENCIAS TECNOLÓGICASUNESCO::GEOGRAFÍAUNESCO::MATEMÁTICAS
researchProduct