6533b853fe1ef96bd12ad1e7

RESEARCH PRODUCT

Integrating Physics Modelling with Machine Learning for Remote Sensing

Daniel Heestermans Svendsen

subject

:MATEMÁTICAS [UNESCO]remote sensingmachine learning:GEOGRAFÍA [UNESCO]:CIENCIAS TECNOLÓGICAS [UNESCO]gaussian processesUNESCO::CIENCIAS TECNOLÓGICASUNESCO::GEOGRAFÍAUNESCO::MATEMÁTICAS

description

L’observació de la Terra a partir de les dades proporcionades per sensors abord de satèl·lits, així com les proporcionades per models de transferència radiativa o climàtics, juntament amb les mesures in situ proporcionen una manera sense precedents de monitorar el nostre planeta amb millors resolucions espacials i temporals. La riquesa, quantitat i diversitat de les dades adquirides i posades a disposició també augmenta molt ràpidament. Aquestes dades ens permeten predir el rendiment dels cultius, fer un seguiment del canvi d’ús del sòl com ara la desforestació, supervisar i respondre als desastres naturals, i predir i mitigar el canvi climàtic. Per tal de fer front a tots aquests reptes, les dues darreres dècades han evidenciat un gran augment en l'aplicació d'algorismes d'aprenentatge automàtic en l'observació de la Terra. Amb l'anomenat `machine learning' es pot fer un ús eficient del flux de dades creixent en quantitat i diversitat. Els algorismes d'aprenentatge màquina, però, solen ser models agnòstics i massa flexibles i, per tant, acaben per no respectar les lleis fonamentals de la física. D’altra banda, en els darrers anys s’ha produït un augment de la investigació que intenta integrar el coneixement de física en algorismes d’aprenentatge, amb la finalitat d’obtenir solucions interpretables i que tinguin sentit físic. L’objectiu principal d’aquesta tesi és dissenyar diferents maneres de codificar el coneixement físic per proporcionar mètodes d’aprenentatge automàtic adaptats a problemes específics en teledetecció. Introduïm nous mètodes que poden fusionar de manera òptima fonts de dades heterogènies, explotar les regularitats de dades, incorporar equacions diferencials, obtenir models precisos que emulen, i per tant són coherents amb models físics, i models que aprenen parametrizacions del sistema combinant models i simulacions. Earth observation through satellite sensors, models and in situ measurements provides a way to monitor our planet with unprecedented spatial and temporal resolution. The amount and diversity of the data which is recorded and made available is ever-increasing. This data allows us to perform crop yield prediction, track land-use change such as deforestation, monitor and respond to natural disasters and predict and mitigate climate change. The last two decades have seen a large increase in the application of machine learning algorithms in Earth observation in order to make efficient use of the growing data-stream. Machine learning algorithms, however, are typically model agnostic and too flexible and so end up not respecting fundamental laws of physics. On the other hand there has, in recent years, been an increase in research attempting to embed physics knowledge in machine learning algorithms in order to obtain interpretable and physically meaningful solutions. The main objective of this thesis is to explore different ways of encoding physical knowledge to provide machine learning methods tailored for specific problems in remote sensing. Ways of expressing expert knowledge about the relevant physical systems in remote sensing abound, ranging from simple relations between reflectance indices and biophysical parameters to complex models that compute the radiative transfer of electromagnetic radiation through our atmosphere, and differential equations that explain the dynamics of key parameters. This thesis focuses on inversion problems, emulation of radiative transfer models, and incorporation of the abovementioned domain knowledge in machine learning algorithms for remote sensing applications. We explore new methods that can optimally model simulated and in-situ data jointly, incorporate differential equations in machine learning algorithms, handle more complex inversion problems and large-scale data, obtain accurate and computationally efficient emulators that are consistent with physical models, and that efficiently perform approximate Bayesian inversion over radiative transfer models.

https://hdl.handle.net/10550/77356