6533b827fe1ef96bd1285bb0
RESEARCH PRODUCT
Frequentist and Bayesian approaches for a joint model for prostate cancer risk and longitudinal prostate-specific antigen data
Xavier PiulachsAnabel ForteMontserrat RuéHèctor PerpiñánCarmen ArmeroGuadalupe GómezAlvaro PaezCarles Serratsubject
Statistics and ProbabilityPREDICTIONBayesian probabilityurologic and male genital diseasesBayesian inferenceGeneralized linear mixed modelPSAProstate cancerLATENT CLASS MODELSAnàlisi de supervivència (Biometria)Frequentist inference62N01Statisticsprostate cancer screeningSurvival analysis (Biometry)FAILUREMedicineProstate cancer riskTO-EVENT DATAbusiness.industryjoint modelsMORTALITYDISEASE PROGRESSIONmedicine.diseaselinear mixed modelsTIMEProstate-specific antigenProstate cancer screeningshared-parameter models:Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC]62P10SURVIVALStatistics Probability and Uncertaintyrelative risk modelsFOLLOW-UPbusinessdescription
The paper describes the use of frequentist and Bayesian shared-parameter joint models of longitudinal measurements of prostate-specific antigen (PSA) and the risk of prostate cancer (PCa). The motivating dataset corresponds to the screening arm of the Spanish branch of the European Randomized Screening for Prostate Cancer study. The results show that PSA is highly associated with the risk of being diagnosed with PCa and that there is an age-varying effect of PSA on PCa risk. Both the frequentist and Bayesian paradigms produced very close parameter estimates and subsequent 95% confidence and credibility intervals. Dynamic estimations of disease-free probabilities obtained using Bayesian inference highlight the potential of joint models to guide personalized risk-based screening strategies. Peer Reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-13 | Journal of Applied Statistics |