6533b827fe1ef96bd1285cc4

RESEARCH PRODUCT

Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options.

Riccardo Scalenghe

subject

PLA polylactic acidPS polystyreneETS European Emissions Trading schemePOM polyoxymethyleneHMC heat melt compactor technology02 engineering and technology010501 environmental sciencesNHV net habitable volumeLDPE low-density polyethylene01 natural sciencesPC polycarbonateResin identification codeLCP liquid crystal polymerslcsh:Social sciences (General)PAC pro-oxidant additive containingPET polyethylene terephthalateEPR Extended Producers ResponsibilityMultidisciplinaryWaste managementNatural materials021001 nanoscience & nanotechnologyPU or PUR polyurethaneSettore AGR/02 - Agronomia E Coltivazioni ErbaceeEPS expandable polystyreneRIC resin identification codeSettore AGR/14 - PedologiaPVDF polydifluoroethylenelcsh:H1-990210 nano-technologyBiogeoscienceGPPS Polystyrene (General Purpose)PVC polyvinyl chlorideResource (biology)Polymethyl methacrylatePA polyamidePBT polybutylene terephthalatePSU polyarylsulfonePTFE polytetrafluoroethylenePMMA polymethyl methacrylatePHA polyhydroxyalkanoateMicrobiologyPEEK polyaryletheretherketoneArticleEnvironmental scienceEnvironmental science Biogeoscience Industry MicrobiologyPPA polyphthalamideTPE thermoplastic polyester elastomerNatural degradationIndustryPPS polyphenylene sulphidelcsh:Science (General)ABS acrylonitrile-butadiene-styrene0105 earth and related environmental sciencesbusiness.industryPP polypropyleneHDPE high-density polyethyleneBPA bisphenol AHBCD hexabromocyclododecaneFuture studyAgricultureDOM dissolved organic matterDegradation (geology)Environmental sciencebusinesslcsh:Q1-390

description

‘Capable-of-being-shaped’ synthetic compounds are prevailing today over horn, bone, leather, wood, stone, metal, glass, or ceramic in products that were previously left to natural materials. Plastic is, in fact, economical, simple, adaptable, and waterproof. Also, it is durable and resilient to natural degradation (although microbial species capable of degrading plastics do exist). In becoming a waste, plastic accumulation adversely affects ecosystems. The majority of plastic debris pollutes waters, accumulating in oceans. And, the behaviour and the quantity of plastic, which has become waste, are rather well documented in the water, in fact. This review collects existing information on plastics in the soil, paying particular attention to both their degradation and possible re-uses. The use of plastics in agriculture is also considered. The discussion is organised according to their resin type and the identification codes used in recycling programs. In addition, options for post-consumer plastics are considered. Acknowledged indicators do not exist, and future study they will have to identify viable and shared methods to measure the presence and the degradation of individual polymers in soils.

10.1016/j.heliyon.2018.e00941https://pubmed.ncbi.nlm.nih.gov/30582029