6533b827fe1ef96bd1285dc4

RESEARCH PRODUCT

7-Keto-Cholesterol and Cholestan-3beta, 5alpha, 6beta-Triol Induce Eryptosis through Distinct Pathways Leading to NADPH Oxidase and Nitric Oxide Synthase Activation

Alessandro AttanzioMaria A. LivreaAntonio CillaMario AllegraLuisa TesoriereAnna Frazzitta

subject

0301 basic medicineErythrocytesPhysiologyEryptosisNADPH Oxidaselcsh:PhysiologyMethemoglobinHemoglobinsPhosphatidylinositol 3-Kinaseschemistry.chemical_compound0302 clinical medicinelcsh:QD415-436RBC-NOS activationKetocholesterolsHemechemistry.chemical_classificationNADPH oxidaselcsh:QP1-981biologyrac GTP-Binding ProteinsCholestanolErythrocyteNitric oxide synthaseRac GTP-Binding ProteinsRBC-NOX activationToxic oxysterolBiochemistry030220 oncology & carcinogenesisOxidation-ReductionHumanSignal Transductioncirculatory and respiratory physiologyOxidative phosphorylationlcsh:BiochemistryNitrosative stre03 medical and health sciencesHumansHemoglobinReactive oxygen speciesKetocholesterolNADPH Oxidases030104 developmental biologychemistrybiology.proteinTriolPhosphatidylinositol 3-KinaseNitric Oxide SynthaseEryptosiProto-Oncogene Proteins c-aktCholestanols

description

Background/aims We showed that patho-physiological concentrations of either 7-keto-cholesterol (7-KC), or cholestane-3beta, 5alpha, 6beta-triol (TRIOL) caused the eryptotic death of human red blood cells (RBC), strictly dependent on the early production of reactive oxygen species (ROS). The goal of the current study was to assess the contribution of the erythrocyte ROS-generating enzymes, NADPH oxidase (RBC-NOX), nitric oxide synthase (RBC-NOS) and xanthine oxido-reductase (XOR) to the oxysterol-dependent eryptosis and pertinent activation pathways. Methods Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, reactive oxygen/nitrogen species (RONS) and nitric oxide formation from 2',7'-dichloro-dihydrofluorescein (DCF-DA) and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) -dependent fluorescence, respectively; Akt1, phospho-NOS3 Ser1177, and PKCζ from Western blot analysis. The activity of individual 7-KC (7 μM) and TRIOL (2, μM) on ROS-generating enzymes and relevant activation pathways was assayed in the presence of Diphenylene iodonium chloride (DPI), N-nitro-L-arginine methyl ester (L-NAME), allopurinol, NSC23766 and LY294002, inhibitors in this order of RBC-NOX, RBC-NOS, XOR and upstream regulatory proteins Rac GTPase and phosphoinositide3 Kinase (PI3K); hemoglobin oxidation from spectrophotometric analysis. Results RBC-NOX was the target of 7-KC, through a signaling including Rac GTPase and PKCζ, whereas TRIOL caused activation of RBC-NOS according to the pathway PI3K/Akt, with the concurrent activity of a Rac-GTPase. In concomitance with the TRIOL-induced .NO production, formation of methemoglobin with global loss of heme were observed, ascribable to nitrosative stress. XOR, activated after modification of the redox environment by either RBC-NOX or RBC-NOS activity, concurred to the overall oxidative/nitrosative stress by either oxysterols. When 7-KC and TRIOL were combined, they acted independently and their effect on ROS/RONS production and PS exposure appeared the result of the effects of the oxysterols on RBC-NOX and RBC-NOS. Conclusion Eryptosis of human RBCs may be caused by either 7-KC or TRIOL by oxidative/nitrosative stress through distinct signaling cascades activating RBC-NOX and RBC-NOS, respectively, with the complementary activity of XOR; when combined, the oxysterols act independently and both concur to the final eryptotic effect.

https://doi.org/10.33594/000000186