6533b827fe1ef96bd128669e
RESEARCH PRODUCT
The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group
Luis ParisJohn Crispsubject
CombinatoricsMathematics::Group TheoryConjectureGeneral MathematicsMathematics::Rings and AlgebrasFOS: MathematicsGenerating set of a groupArtin group20F36 (Primary) 57N05 (Secondary)Group Theory (math.GR)Mathematics - Group TheoryMathematicsdescription
It was conjectured by Tits that the only relations amongst the squares of the standard generators of an Artin group are the obvious ones, namely that a^2 and b^2 commute if ab=ba appears as one of the Artin relations. In this paper we prove Tits' conjecture for all Artin groups. More generally, we show that, given a number m(s)>1 for each Artin generator s, the only relations amongst the powers s^m(s) of the generators are that a^m(a) and b^m(b) commute if ab=ba appears amongst the Artin relations.
year | journal | country | edition | language |
---|---|---|---|---|
2000-03-22 |