0000000000433280

AUTHOR

John Crisp

showing 16 related works from this author

Commensurability classification of a family of right-angled Coxeter groups

2008

We classify the members of an infinite family of right-angled Coxeter groups up to abstract commensurability.

Condensed Matter::Quantum GasesPure mathematicsApplied MathematicsGeneral MathematicsCoxeter groupPoint groupCommensurability (mathematics)AlgebraMathematics::Group TheoryCoxeter complexArtin groupCondensed Matter::Strongly Correlated ElectronsMathematics::Representation TheoryCoxeter elementMathematicsProceedings of the American Mathematical Society
researchProduct

Boundary quotients and ideals of Toeplitz C∗-algebras of Artin groups

2006

We study the quotients of the Toeplitz C*-algebra of a quasi-lattice ordered group (G,P), which we view as crossed products by a partial actions of G on closed invariant subsets of a totally disconnected compact Hausdorff space, the Nica spectrum of (G,P). Our original motivation and our main examples are drawn from right-angled Artin groups, but many of our results are valid for more general quasi-lattice ordered groups. We show that the Nica spectrum has a unique minimal closed invariant subset, which we call the boundary spectrum, and we define the boundary quotient to be the crossed product of the corresponding restricted partial action. The main technical tools used are the results of …

Pure mathematicsCovariant isometric representation01 natural sciencesToeplitz algebraCrossed productTotally disconnected space0103 physical sciencesFOS: MathematicsQuasi-lattice order0101 mathematicsInvariant (mathematics)Operator Algebras (math.OA)Artin groupQuotientMathematicsDiscrete mathematicsMathematics::Operator Algebras46L55010102 general mathematicsAmenable groupMathematics - Operator AlgebrasHausdorff spaceLength functionArtin group010307 mathematical physicsAnalysisJournal of Functional Analysis
researchProduct

The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group

2000

It was conjectured by Tits that the only relations amongst the squares of the standard generators of an Artin group are the obvious ones, namely that a^2 and b^2 commute if ab=ba appears as one of the Artin relations. In this paper we prove Tits' conjecture for all Artin groups. More generally, we show that, given a number m(s)>1 for each Artin generator s, the only relations amongst the powers s^m(s) of the generators are that a^m(a) and b^m(b) commute if ab=ba appears amongst the Artin relations.

CombinatoricsMathematics::Group TheoryConjectureGeneral MathematicsMathematics::Rings and AlgebrasFOS: MathematicsGenerating set of a groupArtin group20F36 (Primary) 57N05 (Secondary)Group Theory (math.GR)Mathematics - Group TheoryMathematics
researchProduct

Archimedean actions on median pretrees

2001

In this paper we consider group actions on generalized treelike structures (termed ‘pretrees’) defined simply in terms of betweenness relations. Using a result of Levitt, we show that if a countable group admits an archimedean action on a median pretree, then it admits an action by isometries on an [open face R]-tree. Thus the theory of isometric actions on [open face R]-trees may be extended to a more general setting where it merges naturally with the theory of right-orderable groups. This approach has application also to the study of convergence group actions on continua.

Discrete mathematicsCombinatoricsGroup actionBetweenness centralityGroup (mathematics)General MathematicsFace (geometry)Convergence (routing)Countable setAction (physics)MathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

On the classification of CAT(0) structures for the 4-string braid group

2005

This paper is concerned with the class of so-called CAT(0) groups, namely, those groups that admit a geometric (i.e., properly discontinuous, co-compact, and isometric) action on some CAT(0) space. More precisely, we are interested in knowing to what extent it is feasible to classify the geometric CAT(0) actions of a given group (up to, say, equivariant homothety of the space). A notable example of such a classification is the flat torus theorem, which implies that the minimal geometric CAT(0) actions of the free abelian group Z (n ≥ 1) are precisely the free actions by translations of Euclidean space E. Typically, however, a given group will have uncountably many nonequivalent actions, mak…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General Mathematics20F56Braid group20F36Center (group theory)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Combinatoricssymbols.namesakeEuler characteristic[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciences0101 mathematicsComputingMilieux_MISCELLANEOUSMathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Euclidean spaceGroup (mathematics)010102 general mathematicsFree abelian groupAlgebraFree groupsymbolsEquivariant map010307 mathematical physics
researchProduct

Automorphisms of 2–dimensional right-angled Artin groups

2007

We study the outer automorphism group of a right-angled Artin group AA in the case where the defining graph A is connected and triangle-free. We give an algebraic description of Out.AA/ in terms of maximal join subgraphs in A and prove that the Tits’ alternative holds for Out.AA/. We construct an analogue of outer space for Out.AA/ and prove that it is finite dimensional, contractible, and has a proper action of Out.AA/. We show that Out.AA/ has finite virtual cohomological dimension, give upper and lower bounds on this dimension and construct a spine for outer space realizing the most general upper bound. 20F36; 20F65, 20F28

20F36outer spaceCohomological dimensionComputer Science::Digital LibrariesQuantitative Biology::Other01 natural sciencesContractible spaceUpper and lower boundsCombinatorics0103 physical sciences20F650101 mathematicsAlgebraic numberMathematics20F28Quantitative Biology::Biomolecules010102 general mathematicsAstrophysics::Instrumentation and Methods for AstrophysicsOuter automorphism groupAutomorphismGraphArtin groupright-angled Artin groups010307 mathematical physicsGeometry and Topologyouter automorphismsGeometry & Topology
researchProduct

Automorphisms and abstract commensurators of 2-dimensional Artin groups

2004

In this paper we consider the class of 2-dimensional Artin groups with connected, large type, triangle-free defining graphs (type CLTTF). We classify these groups up to isomorphism, and describe a generating set for the automorphism group of each such Artin group. In the case where the defining graph has no separating edge or vertex we show that the Artin group is not abstractly commensurable to any other CLTTF Artin group. If, moreover, the defining graph satisfies a further `vertex rigidity' condition, then the abstract commensurator group of the Artin group is isomorphic to its automorphism group and generated by inner automorphisms, graph automorphisms (induced from automorphisms of the…

Vertex (graph theory)20F67CommensuratorCoxeter groupCoxeter group20F36InverseGroup Theory (math.GR)Automorphism2–dimensional Artin group20F36 20F55 20F65 20F67CombinatoricsMathematics::Group Theorytriangle freeGenerating set of a groupFOS: Mathematicscommensurator groupArtin groupGeometry and TopologyIsomorphism20F5520F65graph automorphismsMathematics - Group TheoryMathematics
researchProduct

Erratum to “Symmetrical subgroups of Artin groups”

2003

Mathematics(all)Pure mathematicsGeneral MathematicsMathematicsAdvances in Mathematics
researchProduct

The conjugacy problem in subgroups of right-angled Artin groups

2009

We prove that the conjugacy problem in right-angled Artin groups (RAAGs), as well as in a large and natural class of subgroups of RAAGs, can be solved in linear-time. This class of subgroups contains, for instance, all graph braid groups (i.e. fundamental groups of configuration spaces of points in graphs), many hyperbolic groups, and it coincides with the class of fundamental groups of ``special cube complexes'' studied independently by Haglund and Wise.

CombinatoricsMathematics::Group TheoryConjugacy problemBraid groupGeometry and TopologyNatural classGraphMathematicsJournal of Topology
researchProduct

SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS

2007

We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of length $n$) with $n\geq 5$. We construct another eight "forbidden" graphs and show that every graph $K$ on $\le 8$ vertices either contains one of our examples, or contains a hole of length $\ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a \RAAG to contain no hyperbolic surface subgroups. We prove that for one of these "forbidden" subgraphs $P_2(6)$, …

General MathematicsGeometric Topology (math.GT)Group Theory (math.GR)Van Kampen diagramRelatively hyperbolic groupConductorCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryArtin L-functionFOS: MathematicsArtin groupArtin reciprocity lawCharacteristic subgroupAbelian groupMathematics - Group TheoryMathematicsInternational Journal of Algebra and Computation
researchProduct

An algebraic loop theorem and the decomposition of PD 3 -pairs

2006

Discrete mathematicsPure mathematicsGeneral MathematicsAlgebraic loopDecomposition (computer science)Projective spaceProjective planeAlgebraic curveBézout's theoremMathematicsCylindrical algebraic decompositionBulletin of the London Mathematical Society
researchProduct

Automorphism groups of some affine and finite type Artin groups

2004

We observe that, for fixed n ≥ 3, each of the Artin groups of finite type An, Bn = Cn, and affine type ˜ An−1 and ˜ Cn−1 is a central extension of a finite index subgroup of the mapping class group of the (n + 2)-punctured sphere. (The centre is trivial in the affine case and infinite cyclic in the finite type cases). Using results of Ivanov and Korkmaz on abstract commensurators of surface mapping class groups we are able to determine the automorphism groups of each member of these four infinite families of Artin groups. A rank n Coxeter matrix is a symmetric n × n matrix M with integer entries mij ∈ N ∪ {∞} where mij ≥ 2 for ij, and mii = 1 for all 1 ≤ i ≤ n. Given any rank n Coxeter matr…

Discrete mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General Mathematics010102 general mathematicsCoxeter groupBraid group20F36Group Theory (math.GR)Automorphism01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]ConductorCombinatoricsMathematics::Group TheoryGroup of Lie typeSymmetric group0103 physical sciencesFOS: MathematicsRank (graph theory)Artin group010307 mathematical physics0101 mathematicsMathematics - Group Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Mathematics
researchProduct

Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups

2003

We prove by explicit construction that graph braid groups and most surface groups can be embedded in a natural way in right-angled Artin groups, and we point out some consequences of these embedding results. We also show that every right-angled Artin group can be embedded in a pure surface braid group. On the other hand, by generalising to right-angled Artin groups a result of Lyndon for free groups, we show that the Euler characteristic -1 surface group (given by the relation x^2y^2=z^2) never embeds in a right-angled Artin group.

graph groupBraid group20F36Group Theory (math.GR)Graphright-angled Artin groupCombinatorics20F36 05C25 05C25symbols.namesakeMathematics::Group Theory05C25Euler characteristicFOS: MathematicssymbolsBraidEmbeddingArtin groupGeometry and Topologygraph braid groupMathematics - Group Theoryconfiguration spacecubed complexMathematics
researchProduct

On the Toeplitz algebras of right-angled and finite-type Artin groups

1999

The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute and which do not. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. As a consequence the Toeplitz algebras of these groups are universal for covariant isometric representations on Hilbert space, and their representations are faithful if the isometries satisfy a properness condition given by Laca and Raeburn. An application of this to right-angled Artin groups gives a uniqueness theorem …

Discrete mathematicsPure mathematicsToeplitz algebraMathematics::Operator AlgebrasGeneral Mathematics46L55Mathematics - Operator Algebras20F36Artin's conjecture on primitive rootsArtin approximation theoremFree productArtin L-functionFOS: MathematicsArtin groupArtin reciprocity law46L55; 20F36Operator Algebras (math.OA)Graph productMathematics
researchProduct

Quasi-isometrically embedded subgroups of braid and diffeomorphism groups

2005

We show that a large class of right-angled Artin groups (in particular, those with planar complementary defining graph) can be embedded quasi-isometrically in pure braid groups and in the group of area preserving diffeomorphisms of the disk fixing the boundary (with respect to the $L^2$-norm metric); this extends results of Benaim and Gambaudo who gave quasi-isometric embeddings of $F\_n$ and $\Z^n$ for all $n>0$. As a consequence we are also able to embed a variety of Gromov hyperbolic groups quasi-isometrically in pure braid groups and in the diffeomorphism group of the disk. Examples include hyperbolic surface groups, some HNN-extensions of these along cyclic subgroups and the fundame…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Fundamental group[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Hyperbolic groupGeneral MathematicsBraid group20F36braid groupGroup Theory (math.GR)01 natural sciencesRelatively hyperbolic group[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]right-angled Artin groupCombinatoricssymbols.namesakeMathematics - Geometric TopologyMathematics::Group Theory05C25hyperbolic group[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesBraidFOS: Mathematics0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsGeometric Topology (math.GT)Braid theoryMathematics::Geometric TopologyPlanar graphsymbols010307 mathematical physicsDiffeomorphismMathematics - Group Theory20F36; 05C25
researchProduct

On the CAT(0) dimension of 2-dimensional Bestvina-Brady groups

2002

Let K be a 2-dimensional finite flag complex. We study the CAT(0) dimension of the `Bestvina-Brady group', or `Artin kernel', Gamma_K. We show that Gamma_K has CAT(0) dimension 3 unless K admits a piecewise Euclidean metric of non-positive curvature. We give an example to show that this implication cannot be reversed. Different choices of K lead to examples where the CAT(0) dimension is 3, and either (i) the geometric dimension is 2, or (ii) the cohomological dimension is 2 and the geometric dimension is not known.

nonpositive curvatureGroup (mathematics)20F6720F67 57M20Geometric Topology (math.GT)Group Theory (math.GR)Cohomological dimensionEuclidean distanceCombinatoricsKernel (algebra)Mathematics::Group TheoryMathematics - Geometric Topologydimension57M20Dimension (vector space)FOS: MathematicsArtin groupflag complexGeometry and TopologyArtin groupMathematics - Group TheoryZero-dimensional spaceMathematicsFlag (geometry)
researchProduct