0000000000433280
AUTHOR
John Crisp
Commensurability classification of a family of right-angled Coxeter groups
We classify the members of an infinite family of right-angled Coxeter groups up to abstract commensurability.
Boundary quotients and ideals of Toeplitz C∗-algebras of Artin groups
We study the quotients of the Toeplitz C*-algebra of a quasi-lattice ordered group (G,P), which we view as crossed products by a partial actions of G on closed invariant subsets of a totally disconnected compact Hausdorff space, the Nica spectrum of (G,P). Our original motivation and our main examples are drawn from right-angled Artin groups, but many of our results are valid for more general quasi-lattice ordered groups. We show that the Nica spectrum has a unique minimal closed invariant subset, which we call the boundary spectrum, and we define the boundary quotient to be the crossed product of the corresponding restricted partial action. The main technical tools used are the results of …
The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group
It was conjectured by Tits that the only relations amongst the squares of the standard generators of an Artin group are the obvious ones, namely that a^2 and b^2 commute if ab=ba appears as one of the Artin relations. In this paper we prove Tits' conjecture for all Artin groups. More generally, we show that, given a number m(s)>1 for each Artin generator s, the only relations amongst the powers s^m(s) of the generators are that a^m(a) and b^m(b) commute if ab=ba appears amongst the Artin relations.
Archimedean actions on median pretrees
In this paper we consider group actions on generalized treelike structures (termed ‘pretrees’) defined simply in terms of betweenness relations. Using a result of Levitt, we show that if a countable group admits an archimedean action on a median pretree, then it admits an action by isometries on an [open face R]-tree. Thus the theory of isometric actions on [open face R]-trees may be extended to a more general setting where it merges naturally with the theory of right-orderable groups. This approach has application also to the study of convergence group actions on continua.
On the classification of CAT(0) structures for the 4-string braid group
This paper is concerned with the class of so-called CAT(0) groups, namely, those groups that admit a geometric (i.e., properly discontinuous, co-compact, and isometric) action on some CAT(0) space. More precisely, we are interested in knowing to what extent it is feasible to classify the geometric CAT(0) actions of a given group (up to, say, equivariant homothety of the space). A notable example of such a classification is the flat torus theorem, which implies that the minimal geometric CAT(0) actions of the free abelian group Z (n ≥ 1) are precisely the free actions by translations of Euclidean space E. Typically, however, a given group will have uncountably many nonequivalent actions, mak…
Automorphisms of 2–dimensional right-angled Artin groups
We study the outer automorphism group of a right-angled Artin group AA in the case where the defining graph A is connected and triangle-free. We give an algebraic description of Out.AA/ in terms of maximal join subgraphs in A and prove that the Tits’ alternative holds for Out.AA/. We construct an analogue of outer space for Out.AA/ and prove that it is finite dimensional, contractible, and has a proper action of Out.AA/. We show that Out.AA/ has finite virtual cohomological dimension, give upper and lower bounds on this dimension and construct a spine for outer space realizing the most general upper bound. 20F36; 20F65, 20F28
Automorphisms and abstract commensurators of 2-dimensional Artin groups
In this paper we consider the class of 2-dimensional Artin groups with connected, large type, triangle-free defining graphs (type CLTTF). We classify these groups up to isomorphism, and describe a generating set for the automorphism group of each such Artin group. In the case where the defining graph has no separating edge or vertex we show that the Artin group is not abstractly commensurable to any other CLTTF Artin group. If, moreover, the defining graph satisfies a further `vertex rigidity' condition, then the abstract commensurator group of the Artin group is isomorphic to its automorphism group and generated by inner automorphisms, graph automorphisms (induced from automorphisms of the…
Erratum to “Symmetrical subgroups of Artin groups”
The conjugacy problem in subgroups of right-angled Artin groups
We prove that the conjugacy problem in right-angled Artin groups (RAAGs), as well as in a large and natural class of subgroups of RAAGs, can be solved in linear-time. This class of subgroups contains, for instance, all graph braid groups (i.e. fundamental groups of configuration spaces of points in graphs), many hyperbolic groups, and it coincides with the class of fundamental groups of ``special cube complexes'' studied independently by Haglund and Wise.
SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of length $n$) with $n\geq 5$. We construct another eight "forbidden" graphs and show that every graph $K$ on $\le 8$ vertices either contains one of our examples, or contains a hole of length $\ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a \RAAG to contain no hyperbolic surface subgroups. We prove that for one of these "forbidden" subgraphs $P_2(6)$, …
An algebraic loop theorem and the decomposition of PD 3 -pairs
Automorphism groups of some affine and finite type Artin groups
We observe that, for fixed n ≥ 3, each of the Artin groups of finite type An, Bn = Cn, and affine type ˜ An−1 and ˜ Cn−1 is a central extension of a finite index subgroup of the mapping class group of the (n + 2)-punctured sphere. (The centre is trivial in the affine case and infinite cyclic in the finite type cases). Using results of Ivanov and Korkmaz on abstract commensurators of surface mapping class groups we are able to determine the automorphism groups of each member of these four infinite families of Artin groups. A rank n Coxeter matrix is a symmetric n × n matrix M with integer entries mij ∈ N ∪ {∞} where mij ≥ 2 for ij, and mii = 1 for all 1 ≤ i ≤ n. Given any rank n Coxeter matr…
Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups
We prove by explicit construction that graph braid groups and most surface groups can be embedded in a natural way in right-angled Artin groups, and we point out some consequences of these embedding results. We also show that every right-angled Artin group can be embedded in a pure surface braid group. On the other hand, by generalising to right-angled Artin groups a result of Lyndon for free groups, we show that the Euler characteristic -1 surface group (given by the relation x^2y^2=z^2) never embeds in a right-angled Artin group.
On the Toeplitz algebras of right-angled and finite-type Artin groups
The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute and which do not. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. As a consequence the Toeplitz algebras of these groups are universal for covariant isometric representations on Hilbert space, and their representations are faithful if the isometries satisfy a properness condition given by Laca and Raeburn. An application of this to right-angled Artin groups gives a uniqueness theorem …
Quasi-isometrically embedded subgroups of braid and diffeomorphism groups
We show that a large class of right-angled Artin groups (in particular, those with planar complementary defining graph) can be embedded quasi-isometrically in pure braid groups and in the group of area preserving diffeomorphisms of the disk fixing the boundary (with respect to the $L^2$-norm metric); this extends results of Benaim and Gambaudo who gave quasi-isometric embeddings of $F\_n$ and $\Z^n$ for all $n>0$. As a consequence we are also able to embed a variety of Gromov hyperbolic groups quasi-isometrically in pure braid groups and in the diffeomorphism group of the disk. Examples include hyperbolic surface groups, some HNN-extensions of these along cyclic subgroups and the fundame…
On the CAT(0) dimension of 2-dimensional Bestvina-Brady groups
Let K be a 2-dimensional finite flag complex. We study the CAT(0) dimension of the `Bestvina-Brady group', or `Artin kernel', Gamma_K. We show that Gamma_K has CAT(0) dimension 3 unless K admits a piecewise Euclidean metric of non-positive curvature. We give an example to show that this implication cannot be reversed. Different choices of K lead to examples where the CAT(0) dimension is 3, and either (i) the geometric dimension is 2, or (ii) the cohomological dimension is 2 and the geometric dimension is not known.