6533b873fe1ef96bd12d5790

RESEARCH PRODUCT

On the CAT(0) dimension of 2-dimensional Bestvina-Brady groups

John Crisp

subject

nonpositive curvatureGroup (mathematics)20F6720F67 57M20Geometric Topology (math.GT)Group Theory (math.GR)Cohomological dimensionEuclidean distanceCombinatoricsKernel (algebra)Mathematics::Group TheoryMathematics - Geometric Topologydimension57M20Dimension (vector space)FOS: MathematicsArtin groupflag complexGeometry and TopologyArtin groupMathematics - Group TheoryZero-dimensional spaceMathematicsFlag (geometry)

description

Let K be a 2-dimensional finite flag complex. We study the CAT(0) dimension of the `Bestvina-Brady group', or `Artin kernel', Gamma_K. We show that Gamma_K has CAT(0) dimension 3 unless K admits a piecewise Euclidean metric of non-positive curvature. We give an example to show that this implication cannot be reversed. Different choices of K lead to examples where the CAT(0) dimension is 3, and either (i) the geometric dimension is 2, or (ii) the cohomological dimension is 2 and the geometric dimension is not known.

10.2140/agt.2002.2.921http://arxiv.org/abs/math/0211130