6533b853fe1ef96bd12ad7e9
RESEARCH PRODUCT
SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS
Mark SapirJohn CrispMichah Sageevsubject
General MathematicsGeometric Topology (math.GT)Group Theory (math.GR)Van Kampen diagramRelatively hyperbolic groupConductorCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryArtin L-functionFOS: MathematicsArtin groupArtin reciprocity lawCharacteristic subgroupAbelian groupMathematics - Group TheoryMathematicsdescription
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of length $n$) with $n\geq 5$. We construct another eight "forbidden" graphs and show that every graph $K$ on $\le 8$ vertices either contains one of our examples, or contains a hole of length $\ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a \RAAG to contain no hyperbolic surface subgroups. We prove that for one of these "forbidden" subgraphs $P_2(6)$, the right angled Artin group $A(P_2(6))$ is a subgroup of a (right angled Artin) diagram group. Thus we show that a diagram group can contain a non-free hyperbolic subgroup answering a question of Guba and Sapir. We also show that fundamental groups of non-orientable surfaces can be subgroups of diagram groups. Thus the first integral homology of a subgroup of a diagram group can have torsion (all homology groups of all diagram groups are free Abelian by a result of Guba and Sapir).
year | journal | country | edition | language |
---|---|---|---|---|
2007-07-08 | International Journal of Algebra and Computation |